

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

How to Contribute

CoreOS documentation is released under the Apache 2.0 License, and we welcome contributions. Check out the help-wanted tag [https://github.com/coreos/docs/issues?q=is%3Aopen+label%3Ahelp-wanted] in this project’s Issues list for good places to start participating.

Submit fixes and additions in the form of GitHub Pull Requests (PRs) [https://help.github.com/articles/using-pull-requests/]. The general process is the typical git fork-branch-PR-review-merge cycle:

	Fork this repository into your GitHub account

	Make changes in a topic branch or your fork’s master

	Send a Pull Request from that topic branch to coreos/docs

	Maintainers will review the PR and either merge it or make comments

Cognizance of the tribal customs described and linked to below will help get your contributions incorporated with the greatest of ease.

Clear commit messages

Commit messages follow a format that makes clear what changed and why it changed. The first line of each commit message should clearly state what module or file changed, summarize the change very briefly, and should end, without a period, somewhere short of 70 characters. After a blank line, the body of the commit message should then explain why the change was needed, with lines wrapped at 72 characters wide and sentences normally punctuated. Cite related issues or previous revisions as appropriate. For example:

ignition: Update etcd example to use %m

Make the etcd configuration example use ignition's %m instead of the
ETCD_NAME environment variable. Fixes #123.

This format can be described somewhat more formally as:

<module or file name>: <what changed>
<BLANK LINE>
<why this change was made>
<BLANK LINE>
[<footer>]

Where the optional [<footer>] might include signed-off-by lines and other metadata.

Style guide

The style guide prescribes the conventions of formatting and English style preferred in CoreOS project documentation.

Translations

We happily accept accurate translations. Please send the documents as a pull request and follow two guidelines:

	Name the files identically to the originals, but put them beneath a directory named for the translation’s gettext locale. For example: JA_JP/doc.md, ZH_CN/doc.md, or KO_KN/doc.md.

	Add an explanation about the translated document to the top of the file: “These documents were translated into Esperanto by Community Member person@example.com and last updated on 2015-12-01. If you find inaccuracies or problems please file an issue on GitHub.”

CoreOS Container Linux Documentation

This repository contains the Markdown source of the Container Linux documentation [https://coreos.com/docs/].

Contributing

Container Linux documentation is released under the Apache 2.0 License, and we welcome contributions. Check out the help-wanted tag [https://github.com/coreos/docs/issues?q=is%3Aopen+label%3Ahelp-wanted] in this project’s Issues list for good places to start participating, and review the contribution guidelines to find out how to submit your edits and improvements.

Documentation style and formatting

English style

Write short sentences. Organize concepts in paragraphs. Prefer lists to tables and paragraphs to lists. Write in the active voice. Avoid jargon beyond the requirements of subject and audience.

Eschew you

You write unambiguous documentation, so you avoid the second person. Avoiding personal pronouns in general helps produce the imperative impersonal tone desired for documentation. Don’t reboot your system or have the user reboot their system. Reboot the system.

Generalities

There are a few other common ways to write or not write things:

	Expand acronyms on their introduction in a document, with the short form following in parentheses: Trusted Platform Module (TPM).

	Terms of art that are not commands or other literal text should often be italicized on their first appearance in a document: Kubernetes is a good example.

	The hyphen is overused and most English compounds do not require it [http://www.economist.com/news/books-and-arts/21723088-hyphens-can-be-tricky-they-need-not-drive-you-crazy-hysteria-over-hyphens].

	There is one space () after a period (aka full stop, .), comma (,), semicolon (;) and other marks of punctuation.

Specifics

There are a few prescribed ways of writing frequently questioned words and phrases:

	The singular possessive form of CoreOS is CoreOS’s. CoreOS’s mission is to secure the infrastructure that powers the Internet.

	Deployments may occur on-premises, sometimes “on-prem,” but never on-premise. A premises is a place. A premise is a proposition.

	GIFEE was formerly Google’s Infrastructure for Everyone Else, but now it is Google’s Infrastructure for EveryonE.

Project names are (mostly) proper nouns

These project names are not capitalized, except when appearing as the first word of a sentence:

	etcd

	flannel

	fleet

	rkt

The first word of a sentence is always capitalized.

Other project names are proper nouns written with an initial capital letter. Examples include Ignition, Dex, and Matchbox.

CoreOS is written in CamelCase. The Linux distribution is called CoreOS Container Linux.

These capitalization rules are traditional and arcane. They should eventually give way to all project and product names being capitalized as proper nouns, except when given literally, e.g., rkt run docker://nginx or /var/lib/rkt.

Unix style: Command line grammar

Commands invoke or execute programs. Commands take arguments and accept options, which themselves may be set to values.

Example: Documenting echo(1)

In this simple command line:

$ echo -n Example
Example

echo is the command, and Example is the argument. The option -n suppresses the terminating newline usually emitted by echo. A binary option represented by a single letter, like -n, is sometimes called a flag. The echo(1) command prints its argument on the standard output, and a good shell excerpt often includes the expected output of commands, as shown here. The shell prompt character $ distinguishes input from output.

Example: Documenting subcommands

Some command lines are more complex. Many commands operate through a set of subcommands. rkt and several other relevant programs follow this pattern.

$ rkt run --debug example.aci
[...]

In this case the argument to rkt, run, is a subcommand. run in turn accepts the --debug option to modify how it executes the ACI image specified by its own argument, example.aci

Example: Documenting long command lines

Some commands pack many subcommands, arguments, and options on a single line. It is good practice to break such long command lines with newlines, escaped with backslash (\), because lines inside code blocks are not soft-wrapped in most presentations. For very long command lines, choose points that break the parameters into logical groups. Lines so wrapped are not indented for vertical alignment.

$ docker run --name docsbuilder \
-i -t \
-p 80:9001 -p 443:9443 \
-v /home/core/site:/app:rw \
-v /etc/ssl/certs:/etc/ssl/certs:ro \
quay.io/coreosinc/coreos-pages-builder scripts/deploy stage

Comment conventions

Add comments inline if possible, and before the referenced line of code if not.

staticPasswords:
- email: "admin@example.com"
 # bcrypt hash of the string "password".
 hash: "$2a$10$2b2cU8CPhOTaGrs1HRQuAueS7JTT5ZHsHSzYiFPm1leZck7Mc8T4W"
 username: "admin" # username to display. NOT used during login.
 userID: "08a8684b-db88-4b73-90a9-3cd1661f5466"

Placeholder conventions

Use these standard example entities to avoid exposing real URLs, IP Addresses, or other data.

	URL: example.com [https://tools.ietf.org/html/rfc2606#section-3]

	IP Address: Any in the range 203.0.113.0/24 [https://tools.ietf.org/html/rfc5737]

Source formatting

CoreOS documentation is written in Markdown [https://daringfireball.net/projects/markdown/syntax], a simple way to annotate text to indicate presentation typesetting. Markdown source is intended to be a plain text human-readable version of the document, even before conversion to HTML for the browser or other display.

Source file naming and encoding

Write Markdown source in UTF-encoded plain text files, named with a reasonable, lower case short form of the document’s title, and suffixed with .md. Prefer hyphens to underscores in file names with two or more words. For example, instructions for DNS configuration are written to a file named configuring-dns.md.

Line wrapping considered harmful

Don’t wrap long lines of text with manual newlines. Line wrapping churns prose documents, because lines not actually edited will nevertheless change when a paragraph is edited and rewrapped.

One sentence per line deprecated

Do not add a line break between sentences. Write natural English paragraphs, separated by a single blank line. Writing Markdown source with a newline between every sentence is acceptable to most compilers and can ease change review. However, this format makes the document less readable in source form.

Preferred markdown symbols

Markdown defines two or more ways to declare some document structures. This documentation prefers these Markdown symbols among their alternatives:

	Headings are denoted in Markdown’s ATX style, with hash character(s): #. See Headings, below.

	Bulleted lists, like this one, are denoted with the asterisk (*), rather than the hyphen.

	Hyperlink URLs are given in the reference style ([hyperlinked text][label]), rather than inline. Hyperlink labels are defined in one list at the end of the document. Relative links are preferred to absolute links. See Hyperlink Considerations, below.

	Italic text is wrapped with a pair of single asterisks: *Italics*; Bold with a double pair: **Bold**.

	Monospace is indicated between a pair of backticks. This distinguishes literal strings like command names, file paths, or values, e.g., /bin/markdown. See Command Line Grammar, below.

	Longer code blocks or file contents are fenced: Set off on new lines between pairs of three backticks, rather than indented. A presentation hint specifying the block’s language can be given immediately after the opening three backticks, e.g., ````yaml`.

Headings

By convention, the level one heading, denoted in Markdown by a single hash character (#), is the document’s title. This document’s title is Documentation style and formatting.

Heading style

Each heading is both preceded and followed by a newline. A space separates the Markdown symbols from the heading text. Headings are typed in Sentence case, capitalizing the first letter of the first word, but other words only as they would be capitalized if appearing in the middle of a sentence.

Heading semantics and the sidebar outline

Section headings expose the document’s logical structure with a notation of incrementing hash marks (#[#][...]) for increasingly nested levels of a hierarchy. With the level one heading devoted to the document title, the second-level headings represent the document’s primary concepts.

The site deployment process inspects a document’s headings to derive the thumb index outlines seen in the right sidebar of documentation viewed at CoreOS.com [https://coreos.com/docs/].

Example: This document’s source

The abridged skeletal markdown source for this document’s headings:

Documentation style and formatting

English style

Eschew you

[...]

Headings

Heading style

[...]

Unix style: Command line grammar

Example: Documenting `echo(1)`

[...]

Hyperlink considerations

Naming

Marking down the link

Example: Reference-style hyperlinking

[...]

File name extension conventions

Example: The “average” document

Most documents have a single h1 (#) heading matching the title, two to five h2 (##) headings representing the topic’s primary concepts, and one or two h3 (###) and h4 (####) headings organizing details beneath each h2.

If a document proves a great deal longer or more structurally complex than those simplistic rules of thumb, there should be a good reason.

[image: _images/Styles.png]headings styles

Hyperlink considerations

Naming

Name hyperlinks carefully to give them maximum context. For example, note that certain information is in the style guide, rather than just pointing lazily to the style guide here. The link text “here” gives almost no information about its target. It is helpful to write a clear sentence [https://faculty.washington.edu/heagerty/Courses/b572/public/StrunkWhite.pdf] first, then bracket the choice words within to declare them a hyperlink.

Marking down the link

As mentioned above, the reference style of Markdown hyperlinking is preferred to the inline. Hyperlinks are marked with two pairs of square brackets, the first enclosing the hyperlinked text, the second enclosing a label for the link. Labels are in turn associated with a target URL in a list of declarations at the end of the document. Each label declaration consists of a line beginning with the bracket-enclosed label, a colon, and the target URL (the href in HTML). The target URL may optionally be followed by a link title in double quotes. The list of link label declarations should be sorted alphabetically.

Example: Reference-style hyperlinking

The reference style of [Markdown hyperlinks][mdlinks] allows for easier
reading of source and formalizes the declaration of links.

Another paragraph may reference the [project introduction][readme],
which link will likewise have its label defined at the document's foot.

[mdlinks]: http://daringfireball.net/projects/markdown/syntax#link "Markdown link syntax"
[readme]: README.md

Relative URLs preferred

Using relative URLs where possible helps portability among multiple presentation targets, as they remain valid even as the site root moves. Absolute linking is obviously necessary for resources external to the document’s repository and/or the coreos.com domain.

For example, there are two ways to refer to the CoreOS quick start guide’s location. The preferred way is a relative link from the current file’s path to the target, which from this document is os/quickstart.md. An absolute link to the complete URL is less flexible, and more verbose: https://github.com/coreos/docs/blob/master/os/quickstart.md.

Hyperlink deployment automation

CoreOS documents have two major publication targets: the coreos.com documentation library [https://coreos.com/docs/], and GitHub’s Markdown presentation [https://help.github.com/articles/github-flavored-markdown/]. The deployment scripts used to build the CoreOS site handle some of the wrinkles arising between the two targets. These scripts expect links to other CoreOS project documentation to refer to the Markdown source; that is, to end with the .md file extension. The deployment scripts rewrite hyperlinks to replace that extension with .html for presentation. This allows the links to be valid in either context. External links are not rewritten.

Example: Documenting code blocks

Insert triple backtick (grave accent) characters on a new line before and after a block of code. A tag, such as yaml, sh, json, or ini, can be placed after the opening backticks to declare the language in the block. Markdown syntax is not interpreted within the gated code block, but special characters are replaced with HTML entities.

apiVersion: v1
kind: Service
metadata:
 name: etcd-client
spec:
 ports:
 - name: etcd-client-port
 port: 2379
 protocol: TCP
 targetPort: 2379
 selector:
 app: etcd

View this document’s source to see the Markdown that generates the code block above.

File name extension conventions

Some file types are commonly identified with more than one file name extension. For example, YAML is usually stored in files whose names end in either .yml, or .yaml. For the sake of consistency, use the file name extension designated in the following list when referring to or creating files of any of the listed types in CoreOS projects and their documentation.

	YAML: file.yaml is preferred to file.yml

	HTML: file.html, not file.htm

Configure machines to use CoreUpdate

Configuring new or existing Container Linux machines to communicate with a CoreUpdate [https://coreos.com/products/coreupdate] instance is a simple change to a configuration file.

New machines

New servers can be configured to communicate with your CoreUpdate installation by using Container Linux Configs

By default, your installation has a single application, Container Linux, with the identifier e96281a6-d1af-4bde-9a0a-97b76e56dc57. This ID is universal and all Container Linux machines are configured to use it. Within the Container Linux application, there are several application groups which have been created to match Container Linux channels with the identifiers alpha, beta, and stable.

In addition to the default groups, you may choose to create your own group that is configured to use a specific channel, rate-limit and other settings. Groups that you create will have a unique identifier that is a generated UUID or you may provide a custom string.

To place a Container Linux machine in one of these groups, you must configure the update settings via a Container Linux Config or a file on disk.

Join preconfigured group

Set the value of server to the custom address of your installation and append “/v1/update/”. Set group to one of the default application groups: alpha, beta, or stable.

For example, here is what the Alpha group looks like in CoreUpdate:

[image: ../_images/coreupdate-group-default.png]CoreUpdate Group

Here’s the Container Linux Config to use:

update:
 group: alpha
 server: https://customer.update.core-os.net/v1/update/

Join custom group

Set the value of server to the custom address of your installation and append “/v1/update/”. Set group to the unique identifier of your application group.

For example, here is what “NYC Production” looks like in CoreUpdate:

[image: ../_images/coreupdate-group.png]CoreUpdate Group

Here’s the Container Linux Config to use:

update:
 group: 0a809ab1-c01c-4a6b-8ac8-6b17cb9bae09
 server: https://customer.update.core-os.net/v1/update/

Existing machines

To change the update of existing machines, edit /etc/coreos/update.conf with your favorite editor and provide the SERVER= and GROUP= values:

GROUP=0a809ab1-c01c-4a6b-8ac8-6b17cb9bae09
SERVER=https://customer.update.core-os.net/v1/update/

To apply the changes, run:

sudo systemctl restart update-engine

In addition to GROUP= and SERVER=, a few other internal values exist, but are set to defaults. You shouldn’t have to modify these.

COREOS_RELEASE_APPID: the Container Linux app ID, e96281a6-d1af-4bde-9a0a-97b76e56dc57

COREOS_RELEASE_VERSION: defaults to the version of Container Linux you’re running

COREOS_RELEASE_BOARD: defaults to amd64-usr

Viewing machines in CoreUpdate

Each machine should check in about 10 minutes after boot and roughly every hour after that. If you’d like to see it sooner, you can force an update check, which will skip any rate-limiting settings that are configured.

Force update in background

$ update_engine_client -check_for_update
[0123/220706:INFO:update_engine_client.cc(245)] Initiating update check and install.

Force update in foreground

If you want to see what’s going on behind the scenes, you can watch the ouput in the foreground:

$ update_engine_client -update
[0123/222449:INFO:update_engine_client.cc(245)] Initiating update check and install.
[0123/222449:INFO:update_engine_client.cc(250)] Waiting for update to complete.
LAST_CHECKED_TIME=0
PROGRESS=0.000000
CURRENT_OP=UPDATE_STATUS_IDLE
NEW_VERSION=0.0.0.0
NEW_SIZE=0
[0123/222454:ERROR:update_engine_client.cc(189)] Update failed.

Be aware that the “failed update” means that there isn’t a newer version to install.

Configure CoreUpdate to serve packages from AWS S3

The updateservicectl [https://github.com/coreos/updateservicectl/releases] tool can be used to fetch Container Linux updates from upstream and push the update payload to AWS S3. This process is documented for a general file server at: CoreUpdate - Air Gapped Package Management

Download the update payload from the upstream public CoreUpdate instance. The command below fetches the update payload for Container Linux release 1632.2.1:

$ updateservicectl --server=https://public.update.core-os.net package download --dir=/packages/ --version=1632.2.1

Now the /packages/ directory contains a JSON file with update metadata and the Gzipped update payload:

$ tree packages
packages
├── e96281a6-d1af-4bde-9a0a-97b76e56dc57_1632.2.1_info.json
└── e96281a6-d1af-4bde-9a0a-97b76e56dc57_1632.2.1_update.gz

0 directories, 2 files

Use the updateservicectl package create bulk command to create the package on a CoreUpdate instance. In the example below, CoreUpdate is running at: http://coreupdate.example.com:8000.

$ updateservicectl --server=http://coreupdate.example.com:8000 --user=admin --key=4025a24d-b1e4-4294-b0ca package create bulk --base-url=https://s3-us-west-1.amazonaws.com/core-update-support --dir=/packages

Note the use of the flags --user and --key these will be required. Most often the user will be admin and the key can be found in the /etc/coreupdate/config.yaml file.

Be certain to format the URL passed to the --base-url flag as described in the AWS document: “AWS S3 Regions and Endpoints [https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region]”.

On successful creation of the package, the output of this command will state where to upload payloads:

2018/02/06 15:59:41 Creating package with AppId=e96281a6-d1af-4bde-9a0a-97b76e56dc57 and Version=1632.2.1
2018/02/06 15:59:41 Package metadata uploaded. Total=1 Errors=0
2018/02/06 15:59:41 Please upload payloads to https://s3-us-west-1.amazonaws.com/core-update-support.

Upload the update package to the S3 bucket:

aws s3 cp /packages/e96281a6-d1af-4bde-9a0a-97b76e56dc57_1632.2.1_update.gz s3://core-update-support

Access is a very important thing to consider. It is required to have a bucket policy that will allow the machines updating to download the payload. A tool such as curl can be used to verify the payload can be fetched:

curl -L https://s3-us-west-1.amazonaws.com/core-update-support/e96281a6-d1af-4bde-9a0a-97b76e56dc57_1632.2.1_update.gz -o test.gz

Consult the document CoreUpdate - Configure Machines for details on configuring a Container Linux host to use CoreUpdate.

Getting started with the update service

The update service is a tool that helps you manage large-scale rolling upgrades of software. The service consists of three main parts:

	A distributed web application that runs on top of fleet and docker.

	updateservicectl [https://github.com/coreos/updateservicectl/releases] a CLI interface to the service

	Communication specification for your applications to report their current status and receive notifications of an available update.

The update service is based on an open protocol from Google. This protocol powers updates for the Chrome browser, ChromeOS, Google Earth and more.

Accessing the update service

The update service is an optional hosted service provided by CoreOS and is not included in a standard Container Linux cluster. Head over to the Update Service [https://coreos.com/products/coreupdate/] page for more details.

Authentication for updateservicectl is done with a username and API key combination. Additional users and API keys can be provisioned by an existing user. Substitute the server address you were given during the activation process:

updateservicectl -user user@example.com -key d3b07384d113edec49eaa6238ad5ff00 -server https://example.update.core-os.net <command>

Since you’ll have to provide these flags each time, it’s recommended that you set up an alias in your bash profile. We’ll assume that you’ve done this for the rest of this document:

alias updateservicectl="/bin/updateservicectl -user user@example.com -key d3b07384d113edec49eaa6238ad5ff00 -server https://example.update.core-os.net"

You may also specify these via the UPDATECTL_USER, UPDATECTL_KEY,
and UPDATECTL_SERVER environment variables.

Anatomy of an update

Let’s walk through the different parts of an update then use updateservicectl to simulate the release of an update.

Application

You can use the update service to facilitate the roll-out of a new version of any application. An application is made up of group of instances. Each instance reports a unique identifier, version, group ID and status to the application via an updater.

You can view the current list of applications with updateservicectl app list:

$ updateservicectl app list

Group

Applications contain groups of instances that are related. Groups are designed to be flexible and can reflect your company’s preferred organizational scheme. Common examples include groups by business unit, team, location, or environment. Each group has separate settings such as the ability to roll-out updates at a specific rate, be paused or unpaused and track a specific channel of the application.

For example, if multiple teams have deployed a distributed database, each team can control how
quickly a new version is rolled out based on their specific needs. Updates can also be paused per group
if a team doesn’t want any updates.

updateservicectl group list --app-id=<app-id>

Channel

Each application can specify channels, such as alpha or beta, that can be updated to refer to different packages. Channels allow you to upload a new beta package and have it rolled out to all groups that track the beta channel, with one command.

updateservicectl channel list --app-id=<appid>

Updater

The updater is a small application that implements the update protocol. This code normally runs inside a separate container running “beside” the container of the application that is being updated. The updater is responsible for periodically reporting information about the instance. If an update is available, the response will contain a location to fetch the update package from plus information required to validate the package.

All of the logic that controls how the release is rolled-out lives in the update service in order for the updaters to be as simple as possible. The updater’s job is fairly straightforward:

Action	Description
——–	————-
Send Request	Send current information about the instance to the update service.
Parse Response	Parse the response from the update service and determine any action that needs to take place.
Download and Verify Package	Download the package from the specified location and verify its signatures.
Send Progress	As a package is being downloaded or installed, send download progress and status to the update service.
Execute Update	Install the package and verify that it installed correctly.
Execute Healthcheck	Carry out a health check on the application to make sure it was installed and initialized correctly.
Send Update Complete	Once a package is successfully installed, tell the update service that everything was successful.
Send Update Error	If an error occurs during the package download or verification, or during update execution or health check, report an error.

Package

A package is a pointer to a signed blob of data that is stored somewhere accessible by your application instances. Each package is tied to an application ID and a semantic version number.

When an out-of-date app instance is notified of an update, it is told where to find the data and how to validate that data. Each application’s updater can contain customized logic to download and apply the update.

For example, a webapp container could be stored in a private docker registry and the update response contains the full address to the registry and a specific tag to pull: index.example.com/webapp:1.2.1. The updater would be programmed to docker pull the image. If everything goes well, the updater sends the update complete event to the update service informing it that the new version is running.

Relationship diagram

[image: ../_images/Relationships.png]Relationship Diagram

Test update with fake clients

The easiest way to illustrate how these concepts work together is to trigger an example with some simulated clients. You can do this with either the UI or via updateservicectl, which is what we’re going to use.

Create an application, channel, and group

First set up a new application with a unique identifier, label, and description:

updateservicectl app create --app-id=e96281a6-d1af-4bde-9a0a-97b76e56dc57 \
	--label="FakeApp" --description="Fake app for testing"

You should now see it in the list of apps:

$updateservicectl app list
Id Label Description
e96281a6-d1af-4bde-9a0a-97b76e56dc57 FakeApp Fake app for testing
f217d8ba-76e6-4b07-8136-049c54b30f21 CoreOS Linux for Servers

Next, create a channel that our group of fake clients will track. Let’s call it master and start it out on version 1.0.0:

updateservicectl channel create --app-id=e96281a6-d1af-4bde-9a0a-97b76e56dc57 \
	--channel=master --version=1.0.0

Next, create a group that we’ll associate our fake clients with. Be
sure to include the app id, the master channel, an ID and a friendly label.

$ updateservicectl group create --app-id=e96281a6-d1af-4bde-9a0a-97b76e56dc57
	--channel=master --group-id=fake1 --label="Fake Clients"

Uploading and signing a package

Now that we have our application, group and channel set up, we can almost test an upgrade. The last step is to load in a new package. In this example, the new package will be fake, with an incremented version.

Start by preparing a fake update.gz:

touch update-1.1.0.gz

You can now use the new-package command to publish this fake package as version 1.1.0 (with a fake URL):

updateservicectl package create --app-id=e96281a6-d1af-4bde-9a0a-97b76e56dc57 \
 --version=1.1.0 \
 --file=update-1.1.0.gz \
 --url=https://fakepackage.local/update-1.1.0.gz

Start fake clients

updateservicectl contains a tool to help you simulate many fake clients running your application. We’re going to start 10 fake clients that are checking for updates every 30-60 seconds. This is much much faster than usual but it will allow us to see our changes take place quickly.

When we start the fake clients, we don’t expect them to do anything since we’re already on version 1.0.0. In another terminal window, start the clients:

$ updateservicectl instance fake --clients-per-app=10 --min-sleep=30 \
	--max-sleep=60 --app-id=e96281a6-d1af-4bde-9a0a-97b76e56dc57 \
	--group-id=fake1 --version=1.0.0
{fake-client-000}: noupdate
{fake-client-002}: noupdate
{fake-client-001}: noupdate
...

Roll out the update

Now let’s see how the fake clients react when we promote the new package 1.1.0 to the master channel. First, let’s set the rate limit of the group to slow down the roll-out. This will make it easier to see what’s going on. Since we only have 10 clients, 2 updates per 60 seconds should be slow enough:

$ updateservicectl group update --app-id=e96281a6-d1af-4bde-9a0a-97b76e56dc57 \
--group-id=fake1 --channel=master --update-count=2 --update-interval=60
Fake Clients	e96281a6-d1af-4bde-9a0a-97b76e56dc57	master	fake1	false	2	60

Next, promote our 1.1.0 release on the master channel:

$ updateservicectl channel update --app-id=e96281a6-d1af-4bde-9a0a-97b76e56dc57 --channel=master --version=1.1.0

In the terminal window running the fake clients, you should see a few of them start to upgrade. The output looks like:

{fake-client-000}: updated from 1.0.0 to 1.1.0

In the UI, navigate to the app and group, then click on “View All Graphs”. You should see the instances slowly start to converge on version 1.1.0.

Further reading

If you’re ready to start writing a custom update client for your application, the Omaha protocol spec is a good place to start. The complete list of update service docs can be found here [https://coreos.com/products/coreupdate/docs/latest/].

On-premises deployment

An on-premises deployment of CoreUpdate is a self-administered instance that can be run behind a firewall.

Accessing the CoreUpdate container

After signing up you will receive a .dockercfg file containing your credentials to the quay.io/coreos/coreupdate repository. Save this file to your Container Linux machine in /home/core/.dockercfg and /root/.dockercfg. You should now be able to execute docker pull quay.io/coreos/coreupdate to download the container.

Database server

CoreUpdate requires an instance of a Postgres database server. You can use an existing instance if you have one, or use the official Postgres docker image [https://registry.hub.docker.com/_/postgres/].

Postgres can be run on Container Linux with a systemd unit file similar to this one:

[Service]
User=core
ExecStartPre=-/usr/bin/docker kill postgres
ExecStartPre=-/usr/bin/docker rm postgres
ExecStart=/usr/bin/docker run --rm --name postgres \
 -v /opt/coreupdate/postgres/data:/var/lib/postgresql/data \
 --net="host" \
 postgres:9.4
ExecStop=/usr/bin/docker kill postgres

[Install]
WantedBy=multi-user.target

It is recommended to mount a volume from your host machine for data storage. The above example uses /opt/coreupdate/postgres/data.

Start the Postgres service by running:

sudo cp postgres.service /etc/systemd/system
sudo systemctl start postgres.service

View the logs and verify it is running:

sudo journalctl -u postgres.service -f

CoreUpdate needs a database and user for the connection, so you may need to initialize these on the Postgres server. You can do this manually, or execute similar commands using another instance of the Postgres container:

docker run --net="host" postgres:9.4 psql -h localhost -U postgres --command "CREATE USER coreos WITH SUPERUSER;"
docker run --net="host" postgres:9.4 psql -h localhost -U postgres --command "CREATE DATABASE coreupdate OWNER coreos;"

The username, password, and database name can be anything you choose as long as they match the DB_URL field in the config file.

Web service

Once your database server is configured and running properly you can configure the web service.

Configuration file

All CoreUpdate configuration options can be stored in a .yaml file. You will need to save this somewhere on your host machine such as /etc/coreupdate/config.yaml.

Below is a configuration file template. Customize the values as needed:

Published base URL of the web service.
Required if using DNS, Load Balancer, or http->https redirections.
BASE_URL: http://localhost:8000

(required) Unique secret session string.
You can generate a UUID from the command line using the `uuidgen` command
SESSION_SECRET: "a-long-unique-string"

Set this to 'false' if using Google authentication.
DISABLE_AUTH: true

Enables Google OAuth, otherwise set DISABLE_AUTH to 'true'
Configure at https://console.developers.google.com
#GOOGLE_OAUTH_CLIENT_ID:
#GOOGLE_OAUTH_CLIENT_SECRET:
The redirect URL follows this format, substituting the BASE_URL: http://localhost:8000/admin/v1/oauth/login
#GOOGLE_OAUTH_REDIRECT_URL:

Address and port to listen on.
LISTEN_ADDRESS: ":8000"

Postgres database settings.
Format: postgres://username:password@host:port/database-name
DB_URL: "postgres://coreos:coreos@localhost:5432/coreupdate?sslmode=disable"
DBTIMEOUT: 0
DBMAXIDLE: 0
DBMAXACTIVE: 100

(Optional) sets a path to enable CoreUpdate's static package serving feature.
Comment out to disable.
#STATIC_PACKAGES_DIR: /packages

(Optional) enables uploading of package payloads to the server.
#ENABLE_PACKAGE_UPLOADS: true

(Optional) Enable if syncing with upstream CoreUpdate instances.
Value is minutes. Zero value is disabled.
This should be disabled if you plan to synchronize packages manually.
UPSTREAM_SYNC_INTERVAL: 10

(Optional) enables TLS
#TLS_CERT_FILE:
#TLS_KEY_FILE:

Package payload hosting

By default the CoreUpdate database only stores meta-data about application packages. This enables you to host the package payloads using the file storage technology of your choice.

If you prefer you can store and serve package payloads from the same machine the CoreUpdate web service is running on. To do so ensure the following settings exist in your configuration file:

STATIC_PACKAGES_DIR: /packages
ENABLE-PACKAGE-UPLOADS: true

And add the volume flag to the coreupdate@.service file below:

-v /opt/packages:/packages

Initializing the application

The CoreUpdate web service can be run with a systemd unit file such as:

[Unit]
Description=Core Update

[Service]
User=core
ExecStartPre=-/usr/bin/docker kill coreupdate-%i
ExecStartPre=-/usr/bin/docker rm coreupdate-%i
ExecStart=/usr/bin/docker run --rm --name coreupdate-%i \
 # mount the location of the config file
 -v /etc/coreupdate:/etc/coreupdate \
 # (optional) mount the location of the package payload directory
 #-v /opt/packages:/packages \
 --net="host" \
 # container to run
 # working directory to locate dashboard
 -w /opt/coreupdate \
 quay.io/coreos/coreupdate:latest \
 # binary inside the container to execute
 /opt/coreupdate/bin/coreupdate \
 # path to configuration file
 --yaml=/etc/coreupdate/config.yaml
ExecStop=/usr/bin/docker kill coreupdate-%i

[Install]
WantedBy=multi-user.target

[X-Fleet]
X-Conflicts=coreupdate@*

Start the service by running:

sudo cp coreupdate@.service /etc/systemd/system
sudo systemctl start coreupdate@.service

View the logs and verify it is running:

sudo journalctl -u coreupdate@.service -f

Create admin users

Now that the server is running the first user must be initialization. Do this using the updateservicectl tool.

This will generate an admin user and an api key, make note of the key for subsequent use of updateservicectl.

updateservicectl --server=http://localhost:8000 database init

Create the first control panel user:

updateservicectl --server=http://localhost:8000 --user=admin --key=<previously-generated-key> admin-user create google.apps.email@example.com

Create the “Container Linux” application

To sync the “Container Linux” application it must exist and have the same application id as the public CoreUpdate instance. NOTE: the application id must match exactly what is listed here:

updateservicectl --server=http://localhost:8000 --user=admin --key=<previously-generated-key> app create --label="Container Linux" --app-id=e96281a6-d1af-4bde-9a0a-97b76e56dc57

Sync public upstream

Create a Public CoreOS upstream:

updateservicectl upstream create --label="Public CoreOS" \
--url="https://public.update.core-os.net"

Perform initial upstream sync:

updateservicectl upstream sync

You can now point your browser to http://localhost:8000 to view the control panel.

Air-gapped package management

On-Premises CoreUpdate instances can be managed in a completely air-gapped environment. Internet access is not required. Below are the steps you can take to update your packages in such an environment.

First you will need to decide if you want your CoreUpdate to host and serve the package files itself, or serve the files from a different fileserver.

Option 1: serving package files from CoreUpdate

CoreUpdate has the ability to serve package files without using a separate file server. Enable this functionality via the config file [https://github.com/coreos/docs/blob/master/coreupdate/on-premises-deployment.md#configuration-file].

The two updateservicectl commands you would need are:

updateservicectl package download

This runs against the upstream instance (usually https://public.update.core-os.net). It downloads the actual binary packages to the computer from which you run the command.

updateservicectl package upload bulk

This runs against the downstream instance (your CoreUpdate server). It uploads the metadata and binary files to your CoreUpdate service.

Option 2: serving package files from a separate fileserver

updateservicectl package download

This runs against the upstream instance (usually https://public.update.core-os.net). It downloads all the actual binary to the computer from which you run the command. Once complete you should copy these files to the fileserver you intend to serve the packages from.

updateservicectl package create bulk

This runs against the downstream instance (your CoreUpdate server). It takes a directory of package binaries, extracts all the necessary metadata, and saves that information to your CoreUpdate service. Since the actual package binaries are served from another location you must provide a base path of that location (see updateservicectl package create bulk --help for more info).

Omaha

The Omaha protocol is the specification that the update service uses to communicate with updaters running in a Container Linux cluster. The protocol is a fairly simple — it specifies sending HTTP POSTs with XML data bodies for various events that happen during the execution of an update.

Update request

The update request sends machine metadata and a list of applications that it is responsible for. In most cases, each updater is responsible for a single package. Here’s what a typical request looks like:

<?xml version="1.0" encoding="UTF-8"?>
<request protocol="3.0">
 <app appid="e96281a6-d1af-4bde-9a0a-97b76e56dc57" version="1.0.0" track="beta" bootid="{fake-client-018}">
 <event eventtype="3" eventresult="2"></event>
 </app>
</request>

Application section

The app section is where the action happens. You can submit multiple applications or application instances in one request, but this isn’t standard.

Parameter	Description
———–	————-
appid	Matches the id of the group that that this instance belongs to in the update service.
version	The current semantic version number of the application code.
track	The channel that the application is requesting.
bootid	The unique identifier assigned to this instance.

Already up-to-date

If the application instance is already running the latest version, the response will be short:

<?xml version="1.0" encoding="UTF-8"?>
<response protocol="3.0" server="update.core-os.net">
 <daystart elapsed_seconds="0"></daystart>
 <app appid="e96281a6-d1af-4bde-9a0a-97b76e56dc57" status="ok">
 <updatecheck status="noupdate"></updatecheck>
 </app>
</response>

As you can see, the response indicated that no update was required for the provided group id and version.

Update required

If the application is not up to date, the response returned contains all of the information needed to execute the update:

<?xml version="1.0" encoding="UTF-8"?>
<response protocol="3.0" server="update.core-os.net">
 <daystart elapsed_seconds="0"></daystart>
 <app appid="e96281a6-d1af-4bde-9a0a-97b76e56dc57" status="ok">
 <updatecheck status="ok">
 <urls>
 <url codebase="http://index.example.com/webapp:1.0.2"></url>
 </urls>
 <manifest version="1.0.2">
 <packages>
 <package hash="fe7374bddde2ddf07f6bfcc728d115d14338964b" name="update.gz" size="23" required="false"></package>
 </packages>
 <actions>
 <action event="postinstall" sha256="b602d630f0a081840d0ca8fc4d35810e42806642b3127bb702d65c3df227d0f5" needsadmin="false" IsDelta="false" DisablePayloadBackoff="true" MetadataSignatureRsa="ixi6Oebo" MetadataSize="190"></action>
 </actions>
 </manifest>
 </updatecheck>
 </app>
</response>

The most important parts of the response are the codebase, which points to the location of the package, and the sha256 which should be checked to make sure the package hasn’t been tampered with.

Report progress, errors, and completion

Events are submitted to the update service as the updater passes certain milestones such as starting the download, installing the update and confirming that the update was complete and successful. Events are specified in numerical codes corresponding to the event initiated and the resulting state. You can find a full list of the event codes [https://code.google.com/p/omaha/wiki/ServerProtocol#event_Element] in Google’s documentation. The Container Linux update service implements a subset of these events:

Event Description	Event Type	Event Result
——————-	————	————–
Downloading latest version.	13	1
Update package arrived successfully.	14	1
Updater has processed and applied package.	3	1
Install success. Update completion prevented by instance.	800	1
Instances upgraded to current channel version.	3	2
Instance reported an error during an update step.	3	0

For example, a 3:2 represents a successful update and a successful reboot. Here’s the request and response:

Request

<?xml version="1.0" encoding="UTF-8"?>
<request protocol="3.0">
 <app appid="e96281a6-d1af-4bde-9a0a-97b76e56dc57" version="1.0.0" track="beta" bootid="{fake-client-018}">
 <event eventtype="3" eventresult="2"></event>
 </app>
</request>

Response

The protocol dictates that each event should be acknowledged even if no data needs to be returned:

<response protocol="3.0" server="update.core-os.net">
 <daystart elapsed_seconds="0"></daystart>
 <app appid="e96281a6-d1af-4bde-9a0a-97b76e56dc57" status="ok"></app>
</response>

Further reading

You can read more about the Omaha tech specs [https://code.google.com/p/omaha/wiki/ServerProtocol] or visit the project homepage [https://code.google.com/p/omaha/].

Using the client

updateservicectl lets you control and test the Container Linux update service. Subcommands let you manage applications, users, groups, packages and write a very simple client that gets its state via environment variables.

Administrative flags

There are a few flags that you must provide to the administrative commands below.

	--user is your username, usually this is an email address or admin

	--key is your API key

	--server is the URL to your update service instance

The commands below will all have a prefix like this:

updateservicectl
	--user=admin \
	--key=d3b07384d113edec49eaa6238ad5ff00 \
	--server=https://example.update.core-os.net

If you do not wish to specify these every time, they
can also be exported as environment variables like this:

export UPDATECTL_USER=admin
export UPDATECTL_KEY=d3b07384d113edec49eaa6238ad5ff00
export UPDATECTL_SERVER=http://localhost:8000

Update clients

There are two tools to test out the update service: instance fake and watch. instance fake simulates a number of clients from a single command. watch is used to quickly implement a simple update client with a minimal amount of code.

Fake instances

This example will start 132 fake instances pinging the update service every 1 to 50 seconds against the Container Linux application’s UUID and put them in the beta group starting at version 1.0.0.

updateservicectl instance fake \
	--clients-per-app=132 \
	--min-sleep=1 \
	--max-sleep=50 \
	--app-id=e96281a6-d1af-4bde-9a0a-97b76e56dc57 \
	--group-id=beta \
	--version=1.0.0

Update watcher

Real clients should implement the Omaha protocol but if you want a fast way to create your own client you can use watch. This will exec a program of your choosing every time a new update is available.

First, create a simple application that dumps the environment variables that the watcher will pass in. Call the script updater.sh.

#!/bin/sh
env | grep UPDATE_SERVICE

Next we will generate a random client UUID and start watching for changes to the given app:

updateservicectl watch \
	--app-id=e96281a6-d1af-4bde-9a0a-97b76e56dc57 \
	--group-id=beta \
	./updater.sh

If you change the version of the beta group’s channel then your script will be re-executed and you will see the UPDATE_SERVICE environment variables change.

Application management

Applications have three pieces of data: a universal unique identifier (UUID), a label and a description. During a request to the update service, the UUID is submitted in order to retrieve the details of the currently available version.

Add an application

Create an application called Container Linux using its UUID along with a nice description.

updateservicectl app create \
	--app-id=e96281a6-d1af-4bde-9a0a-97b76e56dc57 \
	--label="Container Linux" \
	--description="Linux for Servers"

List applications

updateservicectl app list

Package management

Packages represent an individual version of an application and the URL associated with it.

Add an application version

This will create a new package with version 1.0.5 from the file update.gz.

updateservicectl package create \
	--app-id=e96281a6-d1af-4bde-9a0a-97b76e56dc57 \
	--version=1.0.5 \
	--file=update.gz \
	--url="http://my-s3-bucket-or-fileserver.com/my-app/0.0.1/update.gz"

The --meta option allows you to specify a cryptographic signature and file size for verification purposes. It should look like this:

{"metadata_size":"1024", "metadata_signature_rsa":"<insert hash here>"}

List application versions

updateservicectl package list \
	--app-id=e96281a6-d1af-4bde-9a0a-97b76e56dc57

Channel management

A channel gives a nice symbolic name to packages. A group tracks a specific channel. Think of channels as a DNS name for a package.

Update a channel

A channel has a version of individual applications. To change the version of an application specify the app id, channel and the version that channel should present. Additionally you can publish a channel by setting the --publish flag, if not specified publish will always be set to false.

updateservicectl channel update \
	--app-id=e96281a6-d1af-4bde-9a0a-97b76e56dc57 \
	--channel=master \
	--version=1.0.1 \
	--publish=true

Group management

Instances get their updates by giving the service a combination of their group and application id. Groups are usually some division of data centers, environments or customers.

Creating a group

Create a group for the Container Linux application pointing at the master channel called testing. This group might be used in your test environment.

updateservicectl group create \
	--app-id=e96281a6-d1af-4bde-9a0a-97b76e56dc57 \
	--channel=master \
	--group-id=testing \
	--label="Testing Group"

Pausing updates on a group

updateservicectl group pause \
	--app-id=e96281a6-d1af-4bde-9a0a-97b76e56dc57 \
	--group-id=testing

List groups

updateservicectl group list
Label Token UpdatesPaused
Default Group default false

Instance management

The service keeps track of instances and gives you a number of tools to see their state. Most of these endpoints are more nicely consumed via the control panel but you can use them from updateservicectl too.

List instances

This will list all instances that have been seen since the given timestamp.

updateservicectl instance list-updates \
	--start=1392401442

This will list the instances grouped by AppId and Version

updateservicectl instance list-app-versions \
	--start=1392401442

User management

Create a new user

updateservicectl admin-user create user@coreos.net

List users

updateservicectl admin-user list

Delete a user

updateservicectl admin-user delete user@coreos.net

Upstream management

CoreUpdate supports synchronizing certain data with other “upstream” CoreUpdate instances.

By default hosted instances of CoreUpdate periodically synchronize with the public instance of CoreUpdate over the internet. This automatically updates your instance’s Container Linux application packages and channel versions.

Since on-premises instances of CoreUpdate cannot access the internet synchronization must be done manually [https://github.com/coreos/updateservicectl/blob/master/Documentation/sync-packages]. If you decide to enable internet access for your on-premises instance, you can manage upstreams using these commands.

List upstreams

updateservicectl upstream list

Create upstream

updateservicectl upstream create \
	--label="Public Container Linux" \
	--url="https://public.update.core-os.net"

Delete upstream

updateservicectl upstream delete \
	--id=2

Sync upstream

Synchronizes data of all upstreams and blocks until complete.

updateservicectl upstream sync

etcd cluster runtime reconfiguration on CoreOS Container Linux

This document describes the reconfiguration and recovery of an etcd cluster running on Container Linux, using a combination of systemd features and etcdctl commands. The examples given in this document show the configuration for a three-node Container Linux cluster. Replace the IP addresses used in the examples with the corresponding real IPs.

Configuring etcd using Container Linux Config

When a Container Linux Config is used for configuring an etcd member on a Container Linux node, it compiles a special /etc/systemd/system/etcd-member.service.d/20-clct-etcd-member.conf drop-in unit file. For example:

etcd:
 name: demo-etcd-1
 listen_client_urls: http://10.240.0.1:2379,http://0.0.0.0:4001
 advertise_client_urls: http://10.240.0.1:2379
 listen_peer_urls: http://0.0.0.0:2380
 initial_advertise_peer_urls: http://10.240.0.1:2380
 initial_cluster: demo-etcd-1=http://10.240.0.1:2380,demo-etcd-2=http://10.240.0.2:2380,demo-etcd-3=http://10.240.0.3:2380
 initial_cluster_token: demo-etcd-token
 initial_cluster_state: new

The above Container Linux config file can be used to provision a machine. Provisioning with a config file creates the following drop-in:

[Service]
ExecStart=
ExecStart=/usr/lib/coreos/etcd-wrapper $ETCD_OPTS \
 --name="demo-etcd-1" \
 --listen-peer-urls="http://0.0.0.0:2380" \
 --listen-client-urls="http://10.240.0.1:2379,http://0.0.0.0:4001" \
 --initial-advertise-peer-urls="http://10.240.0.1:2380" \
 --initial-cluster="demo-etcd-1=http://10.240.0.1:2380,demo-etcd-2=http://10.240.0.2:2380,demo-etcd-3=http://10.240.0.3:2380" \
 --initial-cluster-state="new" \
 --initial-cluster-token="demo-etcd-token" \
 --advertise-client-urls="http://10.240.0.1:2379"

If the etcd cluster is secured with TLS, use https:// instead of http:// in the config files. If the peer addresses for the initial cluster are unknown when provisioning the cluster, use the etcd discovery service with the --discovery="https://discovery.etcd.io/<token> argument.

Change etcd cluster size

Changing the size of an etcd cluster is as simple as adding a new member, and using the output of the member addition, such as name of the new etcd member, member IDs, state and URLs of the cluster, to the config file for provisioning on the Container Linux node.

	Run the etcdctl member add command.

For example:

$ etcdctl member add node4 http://10.240.0.4:2380

The output of a successful member addition is given below:

added member 9bf1b35fc7761a23 to cluster

ETCD_NAME="node4"
ETCD_INITIAL_CLUSTER="demo-etcd-1=http://10.240.0.1:2380,demo-etcd-2=http://10.240.0.2:2380,demo-etcd-3=http://10.240.0.3:2380,node4=http://10.240.0.4:2380"
ETCD_INITIAL_CLUSTER_STATE="existing"

	Store the output of this command for later use.

	Use the information from the output of the etcdctl member add command and provision a new Container Linux host with the following Container Linux Config:

etcd:
 name: node4
 listen_client_urls: http://10.240.0.4:2379,http://0.0.0.0:4001
 advertise_client_urls: http://10.240.0.4:2379
 listen_peer_urls: http://0.0.0.0:2380
 initial_advertise_peer_urls: http://10.240.0.4:2380
 initial_cluster: demo-etcd-1=http://10.240.0.1:2380,demo-etcd-2=http://10.240.0.2:2380,demo-etcd-3=http://10.240.0.3:2380,node4=http://10.240.0.4:2380
 initial_cluster_state: existing

	Check whether the new member node is up and running:

$ etcdctl cluster-health

member 9bf1b35fc7761a23 is healthy: got healthy result from http://10.240.0.4:2379
cluster is healthy

If your cluster has healthy state, etcd successfully writes cluster configuration into the /var/lib/etcd directory.

Replace a failed etcd member on CoreOS Container Linux

An etcd member node might fail for several reasons: out of disk space, an incorrect reboot, or issues on the underlying system. This section provides instructions on how to recover a failed etcd member.

Consider a scenario where a member is failed in a three-member cluster. The cluster is still running and has maintained quorum [https://github.com/coreos/etcd/blob/master/Documentation/v2/admin_guide.md#fault-tolerance-table]. The example assumes a Container Linux Config is used with the following default options:

etcd:
 name: demo-etcd-1
 listen_client_urls: http://10.240.0.1:2379,http://0.0.0.0:4001
 advertise_client_urls: http://10.240.0.1:2379
 listen_peer_urls: http://0.0.0.0:2380
 initial_advertise_peer_urls: http://10.240.0.1:2380
 initial_cluster: ddemo-etcd-1=http://10.240.0.1:2380,demo-etcd-2=http://10.240.0.2:2380,demo-etcd-3=http://10.240.0.3:2380
 initial_cluster_token: demo-etcd-token
 initial_cluster_state: new

If the etcd cluster is protected with TLS, use https:// instead of http:// in the examples below.

Assume that the given etcd cluster has a faulty member 10.240.0.2:

$ etcdctl cluster-health
member fe2f75dd51fa5ff is healthy: got healthy result from http://10.240.0.1:2379
failed to check the health of member 1609b5a3a078c227 on http://10.240.0.2:2379: Get http://10.240.0.2:2379/health: dial tcp 10.240.0.2:2379: connection refused
member 1609b5a3a078c227 is unreachable: [http://10.240.0.2:2379] are all unreachable
member 60e8a32b09dc91f1 is healthy: got healthy result from http://10.240.0.3:2379
cluster is healthy

	Remove the failed member [https://github.com/coreos/etcd/blob/master/Documentation/op-guide/runtime-configuration.md#remove-a-member] 1609b5a3a078c227 from the etcd cluster.

$ etcdctl member remove 1609b5a3a078c227
Removed member 1609b5a3a078c227 from cluster

The remove subcommand informs all other cluster nodes that a human has determined this node is dead and not available for connections.

	Stop the etcd-member service on the failed node (10.240.0.2):

$ sudo systemctl stop etcd-member.service

	Reinitialize the failed member.

$ etcdctl member add demo-etcd-2 http://10.240.0.2:2380
Added member named demo-etcd-2 with ID 4fb77509779cac99 to cluster

ETCD_NAME="demo-etcd-2"
ETCD_INITIAL_CLUSTER="demo-etcd-1=http://10.240.0.1:2380,demo-etcd-2=http://10.240.0.2:2380,demo-etcd-3=http://10.240.0.3:2380"
ETCD_INITIAL_CLUSTER_STATE="existing"

	Modify the existing systemd drop-in, /etc/systemd/system/etcd-member.service.d/20-clct-etcd-member.conf by replacing the node data with the appropriate information from the output of the etcdctl member add command executed in the last step.

etcd:
 name: demo-etcd-2
 listen_client_urls: http://10.240.0.2:2379,http://0.0.0.0:4001
 advertise_client_urls: http://10.240.0.2:2379
 listen_peer_urls: http://0.0.0.0:2380
 initial_advertise_peer_urls: http://10.240.0.2:2380
 initial_cluster: demo-etcd-1=http://10.240.0.1:2380,demo-etcd-2=http://10.240.0.2:2380,demo-etcd-3=http://10.240.0.3:2380
 initial_cluster_token: demo-etcd-token
 initial_cluster_state: existing

	Check the cluster health:

$ etcdctl cluster-health

member e6c2bda2aa1f2dcf is healthy: got healthy result from http://10.240.0.2:2379
cluster is healthy

If your cluster has healthy state, etcd successfully writes cluster configuration into the /var/lib/etcd directory.

Recovering etcd on CoreOS Container Linux

etcd v3

	Download etcdctl from the etcd Release page [https://github.com/coreos/etcd/releases/] and install, for example, into /opt/bin.

	Create a backup directory:

$ sudo mkdir /var/lib/etcd_backup

	Save a snapshot of the database to /var/lib/etcd_backup/backup.db:

$ sudo ETCDCTL_API=3 /opt/bin/etcdctl snapshot save /var/lib/etcd_backup/backup.db

	Restore the snapshot file into a new member directory /var/lib/etcd_backup/etcd:

$ sudo ETCDCTL_API=3 /opt/bin/etcdctl snapshot --data-dir /var/lib/etcd_backup/etcd restore backup.db \
--name new-demo-etcd-1 \
--initial-cluster new-demo-etcd-1=http://10.240.0.1:2380
--initial-cluster-token new-etcd-cluster-1 \
--initial-advertise-peer-urls http://10.240.0.1:2380

	Remove the obsolete directory:

$ sudo rm -rf /var/lib/etcd

	Move the restored member directory to /var/lib/etcd:

$ sudo mv /var/lib/etcd_backup/etcd /var/lib/

	Set the etcd user permissions:

$ sudo chown etcd -R /var/lib/etcd

	Start the etcd member service:

$ sudo systemctl start etcd-member.service

	Check the node health:

$ etcdctl cluster-health

	The restored cluster is now running with a single node. For information on adding more nodes, see Change etcd cluster size.

etcd v2

If a cluster is totally broken and quorum [https://github.com/coreos/etcd/blob/master/Documentation/v2/admin_guide.md#fault-tolerance-table] cannot be restored, all etcd members must be reconfigured from scratch. This procedure consists of two steps:

	Initialize a one-member etcd cluster using the initial data directory [https://github.com/coreos/etcd/blob/master/Documentation/op-guide/configuration.md#-data-dir]

	Resize this etcd cluster by adding new etcd members by following the steps in the change the etcd cluster size section.

This document is an adaptation for Container Linux of the official etcd disaster recovery guide [https://github.com/coreos/etcd/blob/master/Documentation/op-guide/recovery.md#disaster-recovery], and uses systemd drop-ins for convenience.

Consider a three-node cluster with two permanently lost members.

	Stop the etcd-member service on all the members:

$ sudo systemctl stop etcd-member.service

If you have etcd proxy nodes, they should update members list automatically according to the --proxy-refresh-interval [https://github.com/coreos/etcd/blob/master/Documentation/op-guide/configuration.md#--proxy-refresh-interval] configuration option.

	On one of the member nodes, run the following command to backup the current data directory [https://github.com/coreos/etcd/blob/master/Documentation/op-guide/configuration.md#-data-dir]:

$ sudo etcdctl backup --data-dir /var/lib/etcd --backup-dir /var/lib/etcd_backup

Now that a backup has been created, start a single-member cluster.

	Create the /run/systemd/system/etcd-member.service.d/98-force-new-cluster.conf drop-in file with the following contents:

[Service]
Environment="ETCD_FORCE_NEW_CLUSTER=true"

	Run sudo systemctl daemon-reload.

	Check whether the new drop-in is valid by looking in its journal for errors:

$ sudo journalctl _PID=1 -e -u etcd-member.service

	If everything is ok, start the etcd-member daemon:

$ sudo systemctl start etcd-member.service

	Check the cluster state:

$ etcdctl member list
e6c2bda2aa1f2dcf: name=1be6686cc2c842db035fdc21f56d1ad0 peerURLs=http://10.240.1.2:2380 clientURLs=http://10.240.1.2:2379
$ etcdctl cluster-health
member e6c2bda2aa1f2dcf is healthy: got healthy result from http://10.240.1.2:2379
cluster is healthy

	If the output contains no errors, remove the 98-force-new-cluster.conf drop-in file.

$ rm -rf /run/systemd/system/etcd-member.service.d/98-force-new-cluster.conf

	Reload systemd services:

$ sudo systemctl daemon-reload

It is not necessary to restart the etcd-member service after reloading the systemd services.

	Spin up new nodes. Ensure that the version is given in the config file.
For information on adding more nodes, see Change etcd cluster size.

Enabling HTTPS in an existing etcd cluster

This guide outlines the process of migrating an existing etcd cluster from HTTP communication to encrypted HTTPS. For added security, it also shows how to require TLS peer certificates to authenticate connections.

Prepare cluster components

Check insecure port availability

By default, etcd communicates with clients over two ports: 2379, the current and official IANA port designation, and 4001, for clients who may implement versions of the protocol older than 0.4. We leverage this quirk of legacy support to migrate a running cluster from insecure plain-HTTP communication (on the old port, 4001) to encrypted HTTPS (on the current port, 2379) without cluster downtime. We restrict the legacy communication on port 4001 to the local interface.

If you’ve configured flannel, fleet, or other components to use custom ports, or 2379 only, they will be reconfigured to use port 4001.

If etcd isn’t listening on port 4001, it must also be reconfigured. If you used a Container Linux Config to spin up your machines, you can retrieve the --listen-client-urls value from /etc/systemd/system/etcd-member.service.d/20-clct-etcd-member.conf to verify the etcd ports:

$ grep listen-client-urls /run/systemd/system/etcd-member.service.d/20-clct-etcd-member.conf
 --listen-client-urls="http://0.0.0.0:2379" \

In this case etcd is listening only on port 2379. Add port 4001 with a systemd drop-in unit file. Edit the line that starts with --listen-client-urls in the /etc/systemd/system/etcd-member.service.d/20-clct-etcd-member.conf file and append the new URL on port 4001 to the existing value retrieved in the previous step:

--listen-client-urls="http://0.0.0.0:2379,http://127.0.0.1:4001"

Run systemctl daemon-reload followed by systemctl restart etcd-member.service to restart etcd. Check cluster status using the etcdctl [https://github.com/coreos/etcd/blob/master/etcdctl/README] commands:

$ etcdctl member list
$ etcdctl cluster-health

Repeat these steps on each etcd cluster member.

Generate TLS key pairs

Follow the guide to generating self-signed certificates to create the certificate/key pairs needed for each etcd cluster member.

Copy key pairs to nodes

Assume we have three Container Linux machines, running three etcd cluster members: server1, server2, server3; with corresponding IP addresses: 172.16.0.101, 172.16.0.102, and 172.16.0.103. We will use the following key pair file names in our example:

server1.pem
server1-key.pem

Create the /etc/ssl/etcd directory, then copy the corresponding certificate and key there. Set permissions to secure the directory and key file:

$ chown -R etcd:etcd /etc/ssl/etcd
$ chmod 600 /etc/ssl/etcd/*-key.pem

Copy the ca.pem CA certificate file into /etc/ssl/etcd as well.

Alternatively, copy ca.pem into /etc/ssl/certs instead, and run the update-ca-certificates script to update the system certificates bundle. After doing so, the added CA will be available to any program running on the node, and it will not be necessary to set the CA path for each application.

Repeat this step on the rest of the cluster members.

Using an etcd proxy

If you typically connect to a remote etcd cluster, this is a good time to configure an etcd proxy [https://github.com/coreos/etcd/blob/master/Documentation/v2/proxy] that handles the remote connection and TLS termination, and to reconfigure your apps to communicate through the proxy on localhost. In this case, you must generate a client key pair (e.g. client1.pem and client1-key.pem) and repeat the Copy Key Pairs step above with the client key pair files.

It is also necessary to modify your systemd unit files or drop-ins which use etcdctl in ExecStart*= or ExecStop*= directives to replace the invocation of /usr/bin/etcdctl with /usr/bin/etcdctl --no-sync. This will force etcdctl to use the proxy for all operations.

Configure etcd key pair

Now we will configure etcd to use the new certificates. Create a /etc/systemd/system/etcd-member.service.d/30-certs.conf drop-in file with the following contents:

[Service]
Environment="ETCD_CERT_FILE=/etc/ssl/etcd/server1.pem"
Environment="ETCD_KEY_FILE=/etc/ssl/etcd/server1-key.pem"
Environment="ETCD_TRUSTED_CA_FILE=/etc/ssl/etcd/ca.pem"
Environment="ETCD_CLIENT_CERT_AUTH=true"
Environment="ETCD_PEER_CERT_FILE=/etc/ssl/etcd/server1.pem"
Environment="ETCD_PEER_KEY_FILE=/etc/ssl/etcd/server1-key.pem"
Environment="ETCD_PEER_TRUSTED_CA_FILE=/etc/ssl/etcd/ca.pem"
Environment="ETCD_PEER_CLIENT_CERT_AUTH=true"

Reload systemd configs with systemctl daemon-reload then restart etcd by invoking systemctl restart etcd-member.service. Check cluster health:

$ etcdctl member list
$ etcdctl cluster-health

Repeat this step on the rest of the cluster members.

Configure etcd proxy key pair

If proxying etcd connections as discussed above, create a systemd drop-in unit file named /etc/systemd/system/etcd-member.service.d/30-certs.conf with the following contents:

[Service]
Environment="ETCD_CERT_FILE=/etc/ssl/etcd/client1.pem"
Environment="ETCD_KEY_FILE=/etc/ssl/etcd/client1-key.pem"
Environment="ETCD_TRUSTED_CA_FILE=/etc/ssl/etcd/ca.pem"
Environment="ETCD_PEER_CERT_FILE=/etc/ssl/etcd/client1.pem"
Environment="ETCD_PEER_KEY_FILE=/etc/ssl/etcd/client1-key.pem"
Environment="ETCD_PEER_TRUSTED_CA_FILE=/etc/ssl/etcd/ca.pem"
Listen only on loopback interface.
Environment="ETCD_LISTEN_CLIENT_URLS=http://127.0.0.1:2379,http://127.0.0.1:4001"

Reload systemd configs with systemctl daemon-reload, then restart etcd with systemctl restart etcd-member.service. Check proxy status with, e.g.:

$ curl http://127.0.0.1:4001/v2/stats/self

Change etcd peer URLs

Use etcdctl piped through an awk filter to print the commands needed to reconfigure the cluster peer URLs. After reviewing the command lines, we will invoke them on one etcd cluster member.

Current etcd

On etcd v2.2 or later, invoke:

$ etcdctl member list | awk -F'[: =]' '{print "etcdctl member update "$1" https:"$7":"$8}'

A series of command lines will be printed, one for each etcd cluster member:

etcdctl member update 2428639343c1baab https://172.16.0.102:2380
etcdctl member update 50da8780fd6c8919 https://172.16.0.103:2380
etcdctl member update 81901418ed658b78 https://172.16.0.101:2380

On any one etcd cluster member, run each of the printed commands – except the last one. We will change the peer URL for the last etcd cluster member only after completing any proxy configuration below.

Check cluster health:

$ etcdctl member list
$ etcdctl cluster-health

If the cluster members report as expected, we can move on to configuring the local etcd proxy, if neeeded, then invoking the last of the printed command lines on a cluster member.

etcd proxy

An operating etcd proxy will automatically adopt new peer URLs within 30 seconds of each update (that is, the default [--proxy-refresh-interval][proxy-refresh] 30000).

etcd versions 2.1 and older

For etcd versions 2.1 and earlier, the awk filter to produce the peer URL change commands is different:

$ etcdctl member list | awk -F'[: =]' '{print "curl -XPUT -H \"Content-Type: application/json\" http://localhost:2379/v2/members/"$1" -d \x27{\"peerURLs\":[\"https:"$7":"$8"\"]}\x27"}'

This will produce a set of command lines like:

curl -XPUT -H "Content-Type: application/json" http://localhost:2379/v2/members/2428639343c1baab -d '{"peerURLs":["https://172.16.0.102:2380"]}'
curl -XPUT -H "Content-Type: application/json" http://localhost:2379/v2/members/50da8780fd6c8919 -d '{"peerURLs":["https://172.16.0.103:2380"]}'
curl -XPUT -H "Content-Type: application/json" http://localhost:2379/v2/members/81901418ed658b78 -d '{"peerURLs":["https://172.16.0.101:2380"]}'

Apply the changes in the same manner described above, by running each of the printed commands, except the last one, on any one etcd cluster member. Finally, invoke the last printed command after completing any etcd proxy configuration in the previous section.

Change etcd client URLs

Edit the lines that start with --listen-client-urls, --advertise-client-urls, and --listen-peer-urls in the /etc/systemd/system/etcd-member.service.d/20-clct-etcd-member.conf file and append the new URL on port 4001 to the existing value retrieved in the previous step:

--advertise-client-urls: https://172.16.0.101:2379,http://0.0.0.0:4001 \
--listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001 \
--listen-peer-urls: http://0.0.0.0:2380,http://0.0.0.0:4001 \

Reload systemd configs with systemctl daemon-reload and restart etcd by issuing systemctl restart etcd-member.service. Check that HTTPS connections are working properly with, e.g.:

$ curl --cacert /etc/ssl/etcd/ca.pem --cert /etc/ssl/etcd/server1.pem --key /etc/ssl/etcd/server1-key.pem https://172.16.0.101:2379/v2/stats/self

Check cluster health with etcdctl, now under HTTPS encryption:

$ etcdctl --ca-file /etc/ssl/etcd/ca.pem --cert-file /etc/ssl/etcd/server1.pem --key-file /etc/ssl/etcd/server1-key.pem member list
$ etcdctl --ca-file /etc/ssl/etcd/ca.pem --cert-file /etc/ssl/etcd/server1.pem --key-file /etc/ssl/etcd/server1-key.pem cluster-health

The certificate options can be read from environment variables to shorten the commands:

$ export ETCDCTL_CERT_FILE=/etc/ssl/etcd/server1.pem
$ export ETCDCTL_KEY_FILE=/etc/ssl/etcd/server1-key.pem
$ export ETCDCTL_CA_FILE=/etc/ssl/etcd/ca.pem
$ etcdctl member list
$ etcdctl cluster-health

Check etcd status and availability of the insecure port on the loopback interface:

$ systemctl status etcd-member.service
$ curl http://127.0.0.1:4001/metrics
$ curl http://127.0.0.1:4001/health

Check fleet and flannel:

$ journalctl -u flanneld -f
$ journalctl -u fleet -f

Error messages from an otherwise functional cluster may be ignored on the last etcd restart, but they should not appear thereafter.

Once again, after verifying status, repeat this step on each etcd cluster member.

Getting started with etcd

etcd is an open-source distributed key value store that provides shared configuration and service discovery for Container Linux clusters. etcd runs on each machine in a cluster and gracefully handles leader election during network partitions and the loss of the current leader.

Application containers running on your cluster can read and write data into etcd. Common examples are storing database connection details, cache settings, feature flags, and more. This guide will walk you through a basic example of reading and writing to etcd then proceed to other features like TTLs, directories and watching a prefix. This guide is way more fun when you’ve got at least one Container Linux machine up and running — try it on Amazon EC2 or locally with Vagrant.

Complete etcd API Docs

The version 3 series is the current edition of etcd [https://coreos.com/blog/toward-etcd-v3-in-container-linux.html]. Version 3 etcd binaries are not included in the Container Linux filesystem. Instead, etcd is distributed in a container fetched by an included system service. Read on below in setting up etcd and see the etcd on Container Linux FAQ for more details on etcd v3 in a container on Container Linux.

Setting up etcd

Container Linux’s etcd-member.service systemd unit knows how to fetch and run the current etcd v3.x container image, providing etcd v3 without requiring the binary to be present in every default OS installation.

etcd v3 startup can be configured at a new node’s first boot with a Container Linux Config.

To upgrade an existing etcd v2 cluster rather than deploy a new one, start with the etcd v2 to v3 upgrade doc [https://github.com/coreos/etcd/blob/master/Documentation/upgrades/upgrade_3_0].

A Container Linux Config can be used to set any etcd option, like in this example:

etcd:
 name: my-etcd-1
 listen_client_urls: https://10.240.0.1:2379
 advertise_client_urls: https://10.240.0.1:2379
 listen_peer_urls: https://10.240.0.1:2380
 initial_advertise_peer_urls: https://10.240.0.1:2380
 initial_cluster: my-etcd-1=https://10.240.0.1:2380,my-etcd-2=https://10.240.0.2:2380,my-etcd-3=https://10.240.0.3:2380
 initial_cluster_token: my-etcd-token
 initial_cluster_state: new

Reading and writing to etcd

The HTTP-based API is easy to use. This guide will show both etcdctl and curl examples.

From a Container Linux machine, set a key message with value Hello:

$ etcdctl set /message Hello
Hello

$ curl -X PUT http://127.0.0.1:2379/v2/keys/message -d value="Hello"
{"action":"set","node":{"key":"/message","value":"Hello","modifiedIndex":4,"createdIndex":4}}

Read the value of message back:

$ etcdctl get /message
Hello

$ curl http://127.0.0.1:2379/v2/keys/message
{"action":"get","node":{"key":"/message","value":"Hello","modifiedIndex":4,"createdIndex":4}}

If you followed a guide to set up more than one Container Linux machine, you can SSH into another machine and can retrieve this same value.

To delete the key run:

$ etcdctl rm /message

$ curl -X DELETE http://127.0.0.1:2379/v2/keys/message
{"action":"delete","node":{"key":"/message","modifiedIndex":19,"createdIndex":4}}

Reading and writing from inside a container

To read and write to etcd from within a container you must use the IP address assigned to the docker0 interface on the Container Linux host. From the host, run ip address show to find this address. It’s normally 172.17.0.1.

To read from etcd, replace 127.0.0.1 when running curl in the container:

$ curl http://172.17.0.1:2379/v2/keys/
{"action":"get","node":{"key":"/","dir":true,"nodes":[{"key":"/coreos.com","dir":true,"modifiedIndex":4,"createdIndex":4}]}}

You can also fetch the docker0 IP programmatically:

ETCD_ENDPOINT="$(ifconfig docker0 | awk '/\<inet\>/ { print $2}'):2379"

Proxy example

Let’s pretend we’re setting up a service that consists of a few containers that are behind a proxy container. We can use etcd to announce these containers when they start by creating a directory, having each container write a key within that directory and have the proxy watch the entire directory. We’re going to skip creating the containers here but the docker guide is a good place to start for that.

Create the directory

Directories are automatically created when a key is placed inside. Let’s call our directory foo-service and create a key with information about a container:

$ etcdctl mkdir /foo-service
Cannot print key [/foo-service: Is a directory]
$ etcdctl set /foo-service/container1 localhost:1111
localhost:1111

$ curl -X PUT http://127.0.0.1:2379/v2/keys/foo-service/container1 -d value="localhost:1111"
{"action":"set","node":{"key":"/foo-service/container1","value":"localhost:1111","modifiedIndex":17,"createdIndex":17}}

Read the foo-service directory to see the entry:

$ etcdctl ls /foo-service
/foo-service/container1

$ curl http://127.0.0.1:2379/v2/keys/foo-service
{"action":"get","node":{"key":"/foo-service","dir":true,"nodes":[{"key":"/foo-service/container1","value":"localhost:1111","modifiedIndex":17,"createdIndex":17}],"modifiedIndex":17,"createdIndex":17}}

Watching the directory

Now let’s try watching the foo-service directory for changes, just like our proxy would have to. First, open up another shell on a Container Linux host in the cluster. In one window, start watching the directory and in the other window, add another key container2 with the value localhost:2222 into the directory. This command shouldn’t output anything until the key has changed. Many events can trigger a change, including a new, updated, deleted or expired key.

$ etcdctl watch --recursive /foo-service

$ curl http://127.0.0.1:2379/v2/keys/foo-service?wait=true\&recursive=true

In the other window, let’s pretend a new container has started and announced itself to the proxy by running:

$ etcdctl set /foo-service/container2 localhost:2222
localhost:2222

$ curl -X PUT http://127.0.0.1:2379/v2/keys/foo-service/container2 -d value="localhost:2222"
{"action":"set","node":{"key":"/foo-service/container2","value":"localhost:2222","modifiedIndex":23,"createdIndex":23}}

In the first window, you should get the notification that the key has changed. In a real application, this would trigger reconfiguration.

$ etcdctl watch --recursive /foo-service
localhost:2222

$ curl http://127.0.0.1:2379/v2/keys/foo-service?wait=true\&recursive=true
{"action":"set","node":{"key":"/foo-service/container2","value":"localhost:2222","modifiedIndex":23,"createdIndex":23}}

Watching the directory and triggering an executable

Now let’s try watching the foo-service directory for changes and - if there are any - run the command. In one window, start watching the directory and in the other window, add another key container3 with the value localhost:2222 into the directory. This command shouldn’t trigger anything until the key has changed. The same events as in the previous example can trigger a change. The exec-watch command expects etcdctl to run continuously (for watch command you can use --forever option)

$ etcdctl exec-watch --recursive /foo-service -- sh -c 'echo "\"$ETCD_WATCH_KEY\" key was updated to \"$ETCD_WATCH_VALUE\" value by \"$ETCD_WATCH_ACTION\" action"'

In the other window, let’s imagine a new container has started and announced itself to the proxy by running:

$ etcdctl set /foo-service/container3 localhost:2222
localhost:2222

In the first window, you should get the notification that the key has changed. We have used $ETCD_WATCH_* environment variables which were set by etcdctl.

$ etcdctl exec-watch --recursive /foo-service -- sh -c 'echo "\"$ETCD_WATCH_KEY\" key was updated to \"$ETCD_WATCH_VALUE\" value by \"$ETCD_WATCH_ACTION\" action"'
"/foo-service/container3" key was updated to "localhost:2222" value by "set" action

Test and set

etcd can be used as a centralized coordination service and provides TestAndSet functionality as the building block of such a service. You must provide the previous value along with your new value. If the previous value matches the current value the operation will succeed.

$ etcdctl set /message "Hi" --swap-with-value "Hello"
Hi

$ curl -X PUT http://127.0.0.1:2379/v2/keys/message?prevValue=Hello -d value=Hi
{"action":"compareAndSwap","node":{"key":"/message","value":"Hi","modifiedIndex":28,"createdIndex":27}}

TTL

You can optionally set a TTL for a key to expire in a certain number of seconds. Setting a TTL of 20 seconds:

$ etcdctl set /foo "Expiring Soon" --ttl 20
Expiring Soon

The curl response will contain an absolute timestamp of when the key will expire and a relative number of seconds until that timestamp:

$ curl -X PUT http://127.0.0.1:2379/v2/keys/foo?ttl=20 -d value=bar
{"action":"set","node":{"key":"/foo","value":"bar","expiration":"2014-02-10T19:54:49.357382223Z","ttl":20,"modifiedIndex":31,"createdIndex":31}}

If you request a key that has already expired, you will be returned a 100:

$ etcdctl get /foo
Error: 100: Key not found (/foo) [32]

$ curl http://127.0.0.1:2379/v2/keys/foo
{"errorCode":100,"message":"Key not found","cause":"/foo","index":32}

More information

etcd Overview
Full etcd API Docs
Projects using etcd

etcd on Container Linux FAQ

Questions often asked when using etcd v3 on CoreOS Container Linux

What is the current version of etcd?

The version 3 series is the latest edition of the etcd binary and API. The current release is the latest release in the version 3 series [https://github.com/coreos/etcd/releases].

Where do I find etcd v3 in Container Linux?

Container Linux includes a systemd service, etcd-member.service [https://github.com/coreos/coreos-overlay/blob/master/app-admin/etcd-wrapper/files/etcd-member.service], that knows how to fetch and run etcd v3 in a Linux container. No etcd v3-series binary is directly included in the Container Linux filesystem.

Why is etcd v2 still part of the Container Linux filesystem?

For reasons of compatibility, previous, deprecated versions of etcd, named etcd and etcd2, are included in the Container Linux filesystem until they complete their sunset schedules [https://coreos.com/blog/toward-etcd-v3-in-container-linux.html] and are finally removed.

The etcd (v0) binary will be removed from Container Linux in May, 2017.

The etcd2 binary will be included in the OS until June, 2018.

The recommended way to run etcd on Container Linux is to use the etcd-member service.

When will v3 be included in the OS image?

Version 3-series etcd binaries are packaged in a Linux container and instantiated by the etcd-member.service systemd unit.

Can I curl the v3 api?

No. The etcd v3 API uses gRPC rather than plain text HTTP. Use etcdctl to interact with the etcd v3 API.

How do I provision etcd cluster members?

The preferred way to provision any Container Linux machine is with a Container Linux Config [https://coreos.com/os/docs/latest/configuration.html]. See an example Container Linux Config for etcd in the getting started with etcd guide [https://coreos.com/etcd/docs/latest/getting-started-with-etcd.html].

Can etcd be configured with cloud-config?

The preferred way to configure a Container Linux machine is with Container Linux configs and Ignition. The Container Linux Config Transpiler docs include an etcd configuration example [https://github.com/coreos/container-linux-config-transpiler/blob/master/doc/examples.md#etcd].

Configure CoreOS Container Linux components to connect to etcd with TLS

This document explains how to configure Container Linux components to use secure HTTPS connections to an etcd cluster. The target etcd cluster must already be using HTTPS for its own communications, as explained in the etcd HTTP to HTTPS migration guide.

The primary Container Linux components that use etcd are:

	flannel [https://github.com/coreos/flannel]

	fleet [https://github.com/coreos/fleet]

	locksmith [https://github.com/coreos/locksmith]

This document assumes three Container Linux nodes will be booted and will be running three etcd cluster members: Call them server1, server2, and server3, with IP addresses 172.16.0.101, 172.16.0.102, and 172.16.0.103, respectively. We further assume that the necessary Certificate Authority (CA) and client certificate/key pairs have been created.

Configure flannel to Use secure etcd connection

Flannel options can be specified in a Container Linux Config. For an example, this is a config that sets the etcd endpoints flannel will use and specifies tls resources to encrypt the connection:

flannel:
 etcd_endpoints: "https://172.16.0.101:2379,https://172.16.0.102:2379,https://172.16.0.103:2379"
 etcd_cafile: /etc/ssl/etcd/ca.pem
 etcd_certfile: /etc/ssl/etcd/client.pem
 etcd_keyfile: /etc/ssl/etcd/client-key.pem

If you’re going to use a directory other than /etc/ssl/etcd to store etcd client certificates, you will need to update flanneld.service with your custom folder. This is because flanneld.service is running as a container.

Suppose you’re using /etc/etcd/ssl instead, you will need to adjust the flanneld.service drop in to set an updated ETCD_SSL_DIR environmental variable.

A complete example would look like:

flannel:
 etcd_endpoints: "https://172.16.0.101:2379,https://172.16.0.102:2379,https://172.16.0.103:2379"
 etcd_cafile: /etc/ssl/etcd/ca.pem
 etcd_certfile: /etc/ssl/etcd/client.pem
 etcd_keyfile: /etc/ssl/etcd/client-key.pem
systemd:
 units:
 - name: flanneld.service
 dropins:
 - name: 50-network-config.conf
 contents: |
 Environment="ETCD_SSL_DIR=/etc/etcd/ssl"

Configure fleet to use secure etcd connection

Due to the deprecation of fleet [https://coreos.com/blog/migrating-from-fleet-to-kubernetes.html], Container Linux Configs don’t have a convenient syntax for configuring fleet like for flannel. Fleet can still be easily configured however with the use of a systemd drop-in.

systemd:
 units:
 - name: fleet.service
 dropins:
 - name: 20-fleet-config.conf
 contents: |
 [Service]
 Environment="FLEET_ETCD_CAFILE=/etc/ssl/etcd/ca.pem"
 Environment="FLEET_ETCD_CERTFILE=/etc/ssl/etcd/client.pem"
 Environment="FLEET_ETCD_KEYFILE=/etc/ssl/etcd/client-key.pem"
 Environment="FLEET_ETCD_SERVERS=https://172.16.0.101:2379,https://172.16.0.102:2379,https://172.16.0.103:2379"
 Environment="FLEET_METADATA=hostname=server1"
 Environment="FLEET_PUBLIC_IP=172.16.0.101"

Configure Locksmith to use secure etcd connection

Example Container Linux Config excerpt for Locksmith configuration:

systemd:
 units:
 - name: locksmithd.service
 dropins:
 - name: 20-locksmithd-config.conf
 contents: |
 [Service]
 Environment="LOCKSMITHD_ETCD_CAFILE=/etc/ssl/etcd/ca.pem"
 Environment="LOCKSMITHD_ETCD_CERTFILE=/etc/ssl/etcd/client.pem"
 Environment="LOCKSMITHD_ETCD_KEYFILE=/etc/ssl/etcd/client-key.pem"
 Environment="LOCKSMITHD_ENDPOINT=https://172.16.0.101:2379,https://172.16.0.102:2379,https://172.16.0.103:2379"

Remove legacy etcd ports configuration

Once all etcd clients are configured to use secure ports, the insecure legacy configuration can be disabled. If you’ve followed the etcd Live HTTP to HTTPS migration guide, it is now necessary to edit /etc/systemd/system/etcd2.service.d/40-tls.conf to remove the value http://127.0.0.1:4001 from the ETCD_LISTEN_CLIENT_URLS environment variable. The edited 40-tls.conf should end up looking like:

[Service]
Environment="ETCD_ADVERTISE_CLIENT_URLS=https://172.16.0.101:2379"
Environment="ETCD_LISTEN_CLIENT_URLS=https://0.0.0.0:2379"
Environment="ETCD_LISTEN_PEER_URLS=https://0.0.0.0:2380"

Then, as usual after a systemd configuration change, run systemctl daemon-reload and systemctl restart etcd2. Check the etcd logs to ensure your configuration is valid with a quick journalctl -t etcd2 -f.

Configuring flannel for container networking

Overview

With Docker, each container is assigned an IP address that can be used to communicate with other containers on the same host. For communicating over a network, containers are tied to the IP addresses of the host machines and must rely on port-mapping to reach the desired container. This makes it difficult for applications running inside containers to advertise their external IP and port as that information is not available to them.

flannel solves the problem by giving each container an IP that can be used for container-to-container communication. It uses packet encapsulation to create a virtual overlay network that spans the whole cluster. More specifically, flannel gives each host an IP subnet (/24 by default) from which the Docker daemon is able to allocate IPs to the individual containers.

flannel uses etcd [https://coreos.com/using-coreos/etcd/] to store mappings between the virtual IP and host addresses. A flanneld daemon runs on each host and is responsible for watching information in etcd and routing the packets.

Configuration

Publishing config to etcd

flannel looks up its configuration in etcd. Therefore the first step to getting started with flannel is to publish the configuration to etcd. By default, flannel looks up its configuration in /coreos.com/network/config. At the bare minimum, you must tell flannel an IP range (subnet) that it should use for the overlay. Here is an example of the minimum flannel configuration:

{ "Network": "10.1.0.0/16" }

Use etcdctl utility to publish the config:

$ etcdctl set /coreos.com/network/config '{ "Network": "10.1.0.0/16" }'

You can put this into a drop-in for flanneld.service via a Container Linux Config:

systemd:
 units:
 - name: flanneld.service
 dropins:
 - name: 50-network-config.conf
 contents: |
 [Service]
 ExecStartPre=/usr/bin/etcdctl set /coreos.com/network/config '{ "Network": "10.1.0.0/16" }'

This config instructs flannel to allocate /28 subnets to individual hosts and make sure not to issue subnets outside of 10.1.10.0 - 10.1.50.0 range.

Firewall

flannel uses UDP port 8285 for sending encapsulated IP packets. Make sure to enable this traffic to pass between the hosts. If you find that you can’t ping containers across hosts, this port is probably not open.

Enabling flannel via a Container Linux Config

The last step is to enable flanneld.service by creating the flannel section in our Container Linux Config. Options for flannel can be specified in this section.

flannel: ~

Important: Other units that will run in containers, including those scheduled via fleet, should include Requires=flanneld.service, After=flanneld.service, and Restart=always|on-failure directives. These directive are necessary because flanneld.service may fail due to etcd not being available yet. It will keep restarting and it is important for Docker based services to also keep trying until flannel is up.

Specifying SSL certificates

Flannel requires SSL certificates to communicate with a secure etcd cluster. By default, flannel looks for these certificates in /etc/ssl/etcd. To use different certificates, add Environment=ETCD_SSL_DIR to a drop-in file for flanneld.service. Use the following configuration snippet to achieve this:

systemd:
 units:
 - name: flanneld.service
 dropins:
 - name: 50-ssl.conf
 contents: |
 [Service]
 Environment=ETCD_SSL_DIR=/etc/ssl

Under the hood

To reduce the Container Linux image size, flannel daemon is stored in CoreOS Enterprise Registry as an ACI and not shipped in the Container Linux image. For those users wishing not to use flannel, it helps to keep their installation minimal. When flanneld.service is started, it pulls the flannel ACI from the registry.

Here is the sequence of events that happens when flanneld.service is started followed by a service that runs a Docker container (e.g. redis server):

	flanneld.service gets started and executes /usr/bin/rkt run --net=host quay.io/coreos/flannel:$FLANNEL_VER (the actual invocation is slightly more complex; the full version can be seen here [https://github.com/coreos/coreos-overlay/blob/master/app-admin/flannel-wrapper/files/flanneld.service] or by running systemctl cat flanneld.service, which also includes any drop in units).

	flanneld starts and writes out /run/flannel/subnet.env with the acquired IP subnet information.

	ExecStartPost in flanneld.service converts information in /run/flannel/subnet.env into Docker daemon command line args (such as --bip and --mtu), storing them in /run/flannel/flannel_docker_opts.env.

	redis.service gets started which invokes docker run ..., triggering socket activation of docker.service.

	docker.service sources in /run/flannel/flannel_docker_opts.env which contains env variables with command line options and starts the Docker with them.

	redis.service runs Docker redis container.

Affinity and anti-affinity

For a variety of reasons a service or container should only run on a specific type of hardware. Maybe one machine has faster disk speeds, another is running a conflicting application, and yet another is part of your bare-metal cluster. Each of these would be a good reason to run an application here instead of there, and being able to control where an application gets run can make all of the difference.

In fleet dictating where a container gets run is called Affinity and Anti-Affinity [https://github.com/coreos/fleet/blob/master/Documentation/unit-files-and-scheduling.md#fleet-specific-options]. In Kubernetes this is called the nodeSelector [http://kubernetes.io/docs/user-guide/node-selection/] and nodeAffinity/podAffinity [http://kubernetes.io/docs/user-guide/node-selection/#alpha-features-affinity-and-anti-affinity] fields under PodSpec.

Affinity in fleet

Affinity and anti-affinity are achieved through fleet-specific options in systemd unit-files [https://github.com/coreos/fleet/blob/master/Documentation/unit-files-and-scheduling.md#fleet-specific-options]. These options include:

	MachineID: Run a unit on a specific host.

	MachineOf: Run a unit on the same host as another unit.

	MachineMetadata: Run on a host matching some arbitrary metadata defined in fleet.conf.

	Conflicts: Prevent a unit from running on the same node as some other unit.

	Global: Runs a unit on every node.

	Replaces: Run a unit in place of another unit.

These are described in detail in the fleet documentation [https://github.com/coreos/fleet/blob/master/Documentation/unit-files-and-scheduling.md#unit-scheduling].

These options allow one to specify with arbitrary granularly how, where, and when to schedule a unit on a fleet cluster.

Affinity in Kubernetes

Kubernetes implements node affinity with the nodeSelector and nodeAffinity fields in PodSpec. These fields use both pre-populated metadata [http://kubernetes.io/docs/user-guide/node-selection/#interlude-built-in-node-labels] or user-defined metadata [http://kubernetes.io/docs/user-guide/node-selection/#step-one-attach-label-to-the-node].

User-defined metadata:

These user-defined labels are set like so:

$ kubectl label nodes some-k8s-node.internal.hostename.ext key=value

And they can be retrieved like so:

$ kubectl get nodes --show-labels
NAME STATUS AGE LABELS
some-k8s-node.internal.hostname.ext Ready 8m beta.kubernetes.io/arch=amd64,beta.kubernetes.io/instance-type=instance-type,beta.kubernetes.io/os=linux,failure-domain.beta.kubernetes.io/region=some-us-region-2,failure-domain.beta.kubernetes.io/zone=some-us-region-2c,kubernetes.io/hostname=ip-10-0-0-101.some-us-region-2.internal,key=value
...

nodeSelector

nodeSelector is the most basic way to set node affinity in Kubernetes. Given a set of key: value pair of requirements, a pod can be scheduled to run (or not run) on certain nodes.

The general form of this node selection looks like this:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 env: test
spec:
 containers:
 - name: nginx
 image: nginx
 imagePullPolicy: IfNotPresent
 nodeSelector:
 key1: value1
 key2: value2

nodeSelector example

Let’s say we’re running a Kubernetes cluster on AWS and we want to run an Nginx pod on m3.medium instance. We also want a different httpd pod to only run in the us-west-2 region and only on nodes with the example.com/load-balancer key set to true. Here’s how that mypods.yaml would look:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 env: test
spec:
 containers:
 - name: nginx
 image: nginx
 nodeSelector:
 beta.kubernetes.io/instance-type: m3.medium
 example.com/load-balancer: true

apiVersion: v1
kind: Pod
metadata:
 name: httpd
 labels:
 env: test
spec:
 containers:
 - name: httpd
 image: httpd
 nodeSelector:
 failure-domain.beta.kubernetes.io/region: us-west-2

We create the pods just like usual:

$ kubectl create -f mypods.yaml
pod "nginx" created
pod "wordpress" created

After a while we can see that the httpd pod has been created, but the nginx is still pending.

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
httpd 1/1 Running 0 1m
nginx 0/1 Pending 0 1m

This is because our worker nodes don’t meet one of the nginx pod requirements; neither have the example.com/load-balancer key set to true:

$ kubectl get nodes --show-labels
NAME STATUS AGE LABELS
ip-10-0-0-187.us-west-2.compute.internal Ready 47m beta.kubernetes.io/arch=amd64,beta.kubernetes.io/instance-type=m3.medium,beta.kubernetes.io/os=linux,failure-domain.beta.kubernetes.io/region=us-west-2,failure-domain.beta.kubernetes.io/zone=us-west-2c,key=value,kubernetes.io/hostname=ip-10-0-0-187.us-west-2.compute.internal
ip-10-0-0-188.us-west-2.compute.internal Ready 47m beta.kubernetes.io/arch=amd64,beta.kubernetes.io/instance-type=m3.medium,beta.kubernetes.io/os=linux,failure-domain.beta.kubernetes.io/region=us-west-2,failure-domain.beta.kubernetes.io/zone=us-west-2c,kubernetes.io/hostname=ip-10-0-0-188.us-west-2.compute.internal
ip-10-0-0-50.us-west-2.compute.internal Ready,SchedulingDisabled 47m beta.kubernetes.io/arch=amd64,beta.kubernetes.io/instance-type=m3.medium,beta.kubernetes.io/os=linux,failure-domain.beta.kubernetes.io/region=us-west-2,failure-domain.beta.kubernetes.io/zone=us-west-2c,kubernetes.io/hostname=ip-10-0-0-50.us-west-2.compute.internal

If we add the example.com/load-balancer=true key to one of our nodes, the nginx pod will get scheduled to that node.
Once we have the example.com/load-balancer key set to true, the nginx pod will be scheduled.

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
httpd 1/1 Running 0 1m
nginx 0/1 Pending 0 1m
$ kubectl label node \
 ip-10-0-0-187.us-west-2.compute.internal \
 example.com/load-balancer=true
node "ip-10-0-0-187.us-west-2.compute.internal" labeled
$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
httpd 1/1 Running 0 9m 10.2.26.5 ip-10-0-0-187.us-west-2.compute.internal
nginx 1/1 Running 0 9m 10.2.26.6 ip-10-0-0-187.us-west-2.compute.internal

When a node label changes, pods are not moved. We can demonstrate this by changing the example.com/load-balancer key on ip-10-0-0-187.us-west-2.compute.internal to false, then adding the example.com/load-balancer=true label to our other worker node to see what happens:

$ kubectl label nodes --overwrite ip-10-0-0-187.us-west-2.compute.internal example.com/load-balancer=false
node "ip-10-0-0-187.us-west-2.compute.internal" labeled
$ kubectl label nodes ip-10-0-0-188.us-west-2.compute.internal example.com/load-balancer=true
node "ip-10-0-0-188.us-west-2.compute.internal" labeled
$ kubectl get nodes --show-labels
NAME STATUS AGE LABELS
ip-10-0-0-187.us-west-2.compute.internal Ready 1h [...],example.com/load-balancer=false,[...]
ip-10-0-0-188.us-west-2.compute.internal Ready 1h [...],example.com/load-balancer=true,[...]
$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
httpd 1/1 Running 0 15m 10.2.26.5 ip-10-0-0-187.us-west-2.compute.internal
nginx 1/1 Running 0 15m 10.2.26.6 ip-10-0-0-187.us-west-2.compute.internal

As you can see, both pods keep running on the same host, because the initial httpd pod isn’t moved or unscheduled. Later httpd pods will be assigned to the second node, according to the new example.com/load-balancer=true label.

Affinity

Kubernetes also has a more nuanced way of setting affinity called nodeAffinity and podAffinity [http://kubernetes.io/docs/user-guide/node-selection/#alpha-features-affinity-and-anti-affinity]. These are fields in under Pod metadata and take automatic or user-defined metadata to dictate where to schedule pods. affinity differs from nodeSelector in the following ways:

	Schedule a pod based on which other pods are or are not running on a node.

	Request without requiring that a pod be run on a node.

	Specify a set of allowable values instead of a single value requirement.

Affinity selector | Requirements met | Requirements not met | Requirements lost
—————————————————— | —————- | ——————– | ——————
requiredDuringSchedulingIgnoredDuringExecution | Runs | Fails | Keeps Running
preferredDuringSchedulingIgnoredDuringExecution | Runs | Runs | Keeps Running
(un-implemented) requiredDuringSchedulingRequiredDuringExecution | Runs | Fails | Fails

In addition to affinity/anti-affinity for specific nodes nodeAffinity

nodeAffinity example

Lets take the above example of deploying a nginx and a httpd pod, except we have a more complicated set of requirements:

	nginx cannot run on the same node as httpd

	httpd should run on a node with the x-web:yes label, but can run anywhere.

	nginx must run on a node with y-web:yes label and should fail if not.

TODO: Debug this example

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 nginx: yes
 annotations:
 scheduler.alpha.kubernetes.io/affinity: >
 {
 "nodeAffinity": {
 "requiredDuringSchedulingIgnoredDuringExecution": [
 {
 "labelSelector": {
 "matchExpressions": [
 {
 "key": "x-web",
 "operator": "In",
 "values": ["yes", "true"]
 }
]
 }
 }
]
 },
 "podAntiAffinity": {
 "requiredDuringSchedulingIgnoredDuringExecution": [
 {
 "labelSelector": {
 "matchExpressions": [
 {
 "key": "httpd",
 "operator": "Exists"
 "values": ["yes", "true"]
 }
]
 }
 }
]
 }
 }
spec:
 containers:
 - name: nginx
 image: nginx

apiVersion: v1
kind: Pod
metadata:
 name: httpd
 labels:
 nginx: yes
 annotations:
 scheduler.alpha.kubernetes.io/affinity: >
 {
 "nodeAffinity": {
 "preferredDuringSchedulingIgnoredDuringExecution": [
 {
 "labelSelector": {
 "matchExpressions": [
 {
 "key": "y-web",
 "operator": "In",
 "values": ["yes", "true"]
 }
]
 }
 }
]
 }
 }
spec:
 containers:
 - name: httpd
 image: httpd

Kubernetes DaemonSets vs fleet Global units

Running a container on all nodes is a common task. Aggregating service logs, collecting node metrics, or running a networked storage cluster all require a container to be replicated across all nodes. In fleet this is done with a Global unit [https://coreos.com/fleet/docs/latest/unit-files-and-scheduling.html#systemd-specifiers]. In Kubernetes, this is done with a DaemonSet [http://kubernetes.io/docs/admin/daemons/].

Global units

Global units in fleet are described with the Global option under the [X-Fleet] option in a unit file. For example the following unit file will run on all nodes in a cluster:

[Unit]
Description=MyApp
After=docker.service
Requires=docker.service

[Service]
TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill busybox1
ExecStartPre=-/usr/bin/docker rm busybox1
ExecStartPre=/usr/bin/docker pull busybox
ExecStart=/usr/bin/docker run --name busybox1 busybox /bin/sh -c "trap 'exit 0' INT TERM; while true; do echo Hello World; sleep 1; done"
ExecStop=/usr/bin/docker stop busybox1

[X-Fleet]
Global=true

Can be run and verified with the following commands:

$ fleetctl start hello.service
Unit hello.service
Triggered global unit hello.service start
$ fleetctl list-units
UNIT MACHINE ACTIVE SUB
hello.service 190c6f8f.../node1 			active running
hello.service c46a8ace.../node2 			active running
hello.service d77c07da.../node3 			active running

Kubernetes DaemonSets

Kubernetes DaemonSets [http://kubernetes.io/docs/admin/daemons/] are a Kubernetes service which is run on all (or most) nodes in a cluster.

The DaemonSet can monitor for a specific label, but not create any pods, or it can include a container definition in its spec section.

DaemonSet with Pod declaration

A DaemonSet which includes a container spec would look something like this:

apiVersion: extensions/v1beta1
kationind: DaemonSet
metadata:
 name: app-a
spec:
 template:
 metadata:
 name: app-a
 labels:
 daemon: app-a-daemon
 spec:
 containers:
 - name: app-a
 image: nginx
 ports:
 - containerPort: 80
 hostPort: 8000
 name: serverport

When applied, the DaemonSet creates work on the cluster:

$ kubectl get nodes # Take a look at our nodes
NAME 		 STATUS AGE
controller1.infra.backend Ready,SchedulingDisabled 44m
worker1.infra.backend Ready 44m
worker2.infra.backend Ready 44m
$ kubectl create -f app-a.yaml # Deploy the DaemonSet
daemonset "app-a" created
$ kubectl get pods -o wide # Inspect where DaemonSet pods are running
NAME READY STATUS RESTARTS AGE IP NODE
app-a-8bh7j 1/1 Running 0 2m 10.2.56.5 worker2.infra.backend
app-a-k8s6p 1/1 Running 0 2m 10.2.19.5 worker1.infra.backend
app-a-tgvw6 1/1 Running 0 2m 10.2.44.3 controller1.infra.backend
$ kubectl get ds # Inspect the DaemonSet directly
NAME DESIRED CURRENT READY NODE-SELECTOR AGE
app-a 3 3 0 <none> 2m

DaemonSets on a subset of hosts

Sometimes a DaemonSet should only run on a subset of nodes. This may be because of resource limitations, beta feature roll-out, restricted monitoring needs, etc. Adding a NodeSelector to the .spec.template.spec restricts where the DaemonSet pods are scheduled.

apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
 labels:
 app: app-b
 name: app-b
spec:
 template:
 metadata:
 labels:
 app: app-b-shard
 spec:
 nodeSelector:
 app: app-b-node
 containers:
 - name: app-b-shard
 image: nginx
 ports:
 - containerPort: 80
 hostPort: 8000
 name: serverport

When applying this DaemonSet before adding the chosen app=app-b-node label to any nodes, the DaemonSet does not get scheduled:

$ kubectl create -f app-b.yaml
daemonset "app-b" created
$ kubectl get ds
NAME DESIRED CURRENT READY NODE-SELECTOR AGE
app-b 0 0 0 app=app-b-node 1m

Once we add the label to one or more nodes, the pods are scheduled there:

$ kubectl label node worker1.infra.backend app=app-b-node
node "worker1.infra.backend" labeled
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
app-b-r4y70 1/1 Running 0 24s
$ kubectl get ds
NAME DESIRED CURRENT READY NODE-SELECTOR AGE
app-b 1 1 0 app=app-b-node 2m

Removing the label from the node unschedules the pod running there:

$ kubectl label node worker1.infra.backend app-
node "worker1.infra.backend" labeled
$ kubectl get ds
NAME DESIRED CURRENT READY NODE-SELECTOR AGE
app-b 0 0 0 app=app-b-node 4m

For more information, check the Kubernetes DaemonSets admin guide [http://kubernetes.io/docs/admin/daemons/] and the DaemonSets design document [https://github.com/kubernetes/community/blob/master/contributors/design-proposals/daemon].

Deprecated functionality

While fleet and Kubernetes are similar in functionality, some fleet features do not have direct equivalents in Kubernetes. Workarounds exist for many of these cases. Several of these features and workarounds are outlined below.

Container Dependencies

Fleet uses systemd service dependencies to outline a limited dependency graph. When units are co-located, then containers may be specified to start in a specific order; only beginning a service after others it depends on have begun. This is not really a fleet feature but rather a systemd feature. It is limited by the design and features of systemd.

There are two workarounds for this in Kubernetes:

	Grouping related containers in a Pod.

	Init containers [http://kubernetes.io/docs/user-guide/pods/init-container/]

Grouping containers in Pods

This is the most straightforward to approach the problem. Pods specs can contain multiple containers. By grouping related containers in one Pod, Kubernetes will co-locate them and monitor if all of the containers are running.

Init containers

Init containers [http://kubernetes.io/docs/user-guide/pods/init-container/] are containers that run before a Pod starts up. They can be used to manage assets, wait for services, and perform general setup. A pod is not scheduled until it’s init containers complete.

Graceful Exit Command (ExecStop)

Fleet uses the systemd option ExecStop [https://coreos.com/fleet/docs/latest/launching-containers-fleet.html#run-a-container-in-the-cluster] to instruct systemd how to stop a service gracefully. (The fleet ExecStop feature exhibits a bug depending on how service termination is invoked [https://github.com/coreos/fleet/issues/1000].)

While this exact feature does not exist in Kubernetes, the ExecPreStop does have an analogue: lifecycle.preStop.

A Pod lifecycle.preStop [http://kubernetes.io/docs/user-guide/production-pods/#lifecycle-hooks-and-termination-notice] directive specifies a command run before Kubernetes terminates an application with SIGTERM. This provides a mechanism to perform pre-termination actions to stop applications gracefully.

Here is an example of using lifecycle.preStop, inspired by the Kubernetes docs:

apiVersion: v1
kind: Pod
metadata:
 name: web-server
spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80
 lifecycle:
 preStop:
 exec:
 # SIGTERM triggers a quick exit; gracefully terminate instead
 command: ["/usr/sbin/nginx","-s","quit"]

After a grace period, a running application in the pod will be killed via SIGTERM. The pod’s terminationGracePeriodSeconds defaults to 30 seconds, but can be set to a longer period.

More information can be found in the Kubernetes Pods user guide [http://kubernetes.io/docs/user-guide/pods/#termination-of-pods].

Launching containers with fleet

fleet is no longer actively developed or maintained by CoreOS [https://coreos.com/blog/migrating-from-fleet-to-kubernetes.html]. CoreOS instead recommends Kubernetes [https://coreos.com/kubernetes/docs/latest/] for cluster orchestration.

fleet is a cluster manager that controls systemd at the cluster level. To run your services in the cluster, you must submit regular systemd units combined with a few fleet-specific properties [https://github.com/coreos/fleet/blob/master/Documentation/unit-files-and-scheduling].

If you’re not familiar with systemd units, check out our Getting Started with systemd guide.

This guide assumes you’re running fleetctl locally from a Container Linux machine that’s part of a Container Linux cluster. You can also control your cluster remotely [https://github.com/coreos/fleet/blob/master/Documentation/using-the-client.md#get-up-and-running]. All of the units referenced in this blog post are contained in the unit-examples [https://github.com/coreos/unit-examples/tree/master/simple-fleet] repository. You can clone this onto your Container Linux box to make unit submission easier.

Types of fleet units

Two types of units can be run in your cluster — standard and global units. Standard units are long-running processes that are scheduled onto a single machine. If that machine goes offline, the unit will be migrated onto a new machine and started.

Global units will be run on all machines in the cluster. These are ideal for common services like monitoring agents or components of higher-level orchestration systems like Kubernetes, Mesos or OpenStack. There are two fleetctl commands to view units in the cluster: list-unit-files, which shows the units that fleet knows about and whether or not they are global, and list-units, which shows the current state of units actively loaded into machines in the cluster. Here’s an example cluster with 3 machines, running both types of units:

$ fleetctl list-unit-files
UNIT HASH DSTATE STATE TMACHINE
global-unit.service 8ff68b9 launched launched 3 of 3
standard-unit.service 7710e8a launched launched 148a18ff.../10.10.1.1

You can view all of the machines in the cluster by running list-machines:

$ fleetctl list-machines
MACHINE IP METADATA
148a18ff-6e95-4cd8-92da-c9de9bb90d5a 10.10.1.1 -
491586a6-508f-4583-a71d-bfc4d146e996 10.10.1.2 -
c9de9451-6a6f-1d80-b7e6-46e996bfc4d1 10.10.1.3 -

Now when looking at the status of units, we should expect to see 3 copies of global-unit.service - one running on each machine:

$ fleetctl list-units
UNIT MACHINE ACTIVE SUB
global-unit.service 148a18ff.../10.10.1.1 active running
global-unit.service 491586a6.../10.10.1.2 active running
global-unit.service c9de9451.../10.10.1.3 active running
standard-unit.service 148a18ff.../10.10.1.1 active running

Run a container in the cluster

Running a single container is very easy. All you need to do is provide a regular unit file without an [Install] section. Let’s run the same unit from the Getting Started with systemd guide. First save these contents as myapp.service on the Container Linux machine:

[Unit]
Description=MyApp
After=docker.service
Requires=docker.service

[Service]
TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill busybox1
ExecStartPre=-/usr/bin/docker rm busybox1
ExecStartPre=/usr/bin/docker pull busybox
ExecStart=/usr/bin/docker run --name busybox1 busybox /bin/sh -c "trap 'exit 0' INT TERM; while true; do echo Hello World; sleep 1; done"
ExecStop=/usr/bin/docker stop busybox1

If you’ve been running docker commands manually, be sure you don’t copy a docker run command that starts a container in detached mode (-d). Detached mode won’t start the container as a child of the unit’s pid. This will cause the unit to run for just a few seconds and then exit.

Run the start command to start up the container on the cluster:

$ fleetctl start myapp.service

The unit should have been scheduled to a machine in your cluster:

$ fleetctl list-units
UNIT MACHINE ACTIVE SUB
myapp.service c9de9451.../10.10.1.3 active running

You can view all of the machines in the cluster by running list-machines:

$ fleetctl list-machines
MACHINE IP METADATA
148a18ff-6e95-4cd8-92da-c9de9bb90d5a 10.10.1.1 -
491586a6-508f-4583-a71d-bfc4d146e996 10.10.1.2 -
c9de9451-6a6f-1d80-b7e6-46e996bfc4d1 10.10.1.3 -

Run a high availability service

The main benefit of using Container Linux is to have your services run in a highly available manner. Let’s walk through deploying a service that consists of two identical containers running the Apache web server. Afterwards, we’ll walk through the failure of a machine and the steps fleet takes to relaunch our tasks on another machine.

First, let’s write a unit file that we’ll run two copies of. To do that, we’ll use a template unit, named apache@.service. The template stays on disk and is used as a base to generate two instances, named apache@1.service and apache@2.service:

[Unit]
Description=My Apache Frontend
After=docker.service
Requires=docker.service

[Service]
TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill apache1
ExecStartPre=-/usr/bin/docker rm apache1
ExecStartPre=/usr/bin/docker pull coreos/apache
ExecStart=/usr/bin/docker run --rm --name apache1 -p 80:80 coreos/apache /usr/sbin/apache2ctl -D FOREGROUND
ExecStop=/usr/bin/docker stop apache1

[X-Fleet]
Conflicts=apache@*.service

The Conflicts attribute tells fleet that these two services can’t be run on the same machine, giving us high availability. A full list of options for this section can be found in the fleet units guide [https://github.com/coreos/fleet/blob/master/Documentation/unit-files-and-scheduling].

Let’s start both units and verify that they’re on two different machines:

$ fleetctl start apache@1
$ fleetctl start apache@2
$ fleetctl list-units
UNIT MACHINE ACTIVE SUB
myapp.service c9de9451.../10.10.1.3 active running
apache@1.service 491586a6.../10.10.1.2 active running
apache@2.service 148a18ff.../10.10.1.1 active running

As you can see, the Apache units are now running on two different machines in our cluster.

How do we route requests to these containers? The best strategy is to run a “sidekick” container that performs other duties that are related to our main container but shouldn’t be directly built into that application. Examples of common sidekick containers are for service discovery and controlling external services such as cloud load balancers or DNS.

Recovering from machine failure

Machines in your fleet cluster are constantly in communication with the rest of cluster and elect a leader to make scheduling decisions. The leader is responsible for parsing newly submitted/started units, finding a qualified machine to run them (via X-Fleet parameters), and then informing the machine(s) to start the unit.

When a machine fails to heartbeat back to the fleet leader, all units running on that machine are marked for rescheduling. During that process, qualified machines are found for each unit and they are started on the new machine. Units that can’t be rescheduled will remain stopped until a qualified machine can be found. If the failed machine recovers, the fleet leader will tell it to cease operations of the old units, which have been rescheduled, and then the machine will be available for new work.

You can test out this process by stopping fleet (sudo systemctl stop fleet) on one of the machines running our Apache unit. The fleet logs (sudo journalctl -u fleet) will provide more clarity on what’s going on under the hood.

Run a simple sidekick

The simplest sidekick example is for service discovery [https://github.com/coreos/fleet/blob/master/Documentation/examples/service-discovery]. This unit blindly announces that our container has been started. We’ll run one of these for each Apache unit that’s already running. Again, we’ll use a template unit with two instances. Make a template unit called apache-discovery@.service.

[Unit]
Description=Announce Apache1
BindsTo=apache@%i.service
After=apache@%i.service

[Service]
ExecStart=/bin/sh -c "while true; do etcdctl set /services/website/apache@%i '{ \"host\": \"%H\", \"port\": 80, \"version\": \"52c7248a14\" }' --ttl 60;sleep 45;done"
ExecStop=/usr/bin/etcdctl rm /services/website/apache@%i

[X-Fleet]
MachineOf=apache@%i.service

This unit has a few interesting properties. First, it uses BindsTo to link the unit to our apache@%i.service unit. When the Apache unit is stopped, this unit will stop as well, causing it to be removed from our /services/website directory in etcd. A TTL of 60 seconds is also being used here to remove the unit from the directory if our machine suddenly died for some reason.

Second is %i, a variable built into systemd that represents the instance name of an instantiated unit (a unit launched from a template). This variable expands to any value after the @ in the unit’s name. In our case, it will expand to 1 (for apache-discovery@1) and 2 (for apache-discovery@2).

Third is %H, a variable built into systemd, that represents the hostname of the machine running this unit. Variable usage is covered in our Getting Started with systemd guide as well as in systemd documentation [http://www.freedesktop.org/software/systemd/man/systemd.unit.html#Specifiers].

The fourth is a fleet-specific property [https://github.com/coreos/fleet/blob/master/Documentation/unit-files-and-scheduling] called MachineOf. This property causes the unit to be placed onto the same machine that the corresponding apache service is running on (e.g., apache-discovery@1.service will be scheduled on the same machine as apache@1.service).

Let’s verify that each unit was placed on to the same machine as the Apache service is bound to:

$ fleetctl start apache-discovery@1
$ fleetctl start apache-discovery@2
$ fleetctl list-units
UNIT MACHINE ACTIVE SUB
myapp.service c9de9451.../10.10.1.3 active running
apache@1.service 491586a6.../10.10.1.2 active running
apache@2.service 148a18ff.../10.10.1.1 active running
apache-discovery@1.service 491586a6.../10.10.1.2 active running
apache-discovery@2.service 148a18ff.../10.10.1.1 active running

Now let’s verify that the service discovery is working correctly:

$ etcdctl ls /services/ --recursive
/services/website
/services/website/apache@1
/services/website/apache@2
$ etcdctl get /services/website/apache@1
{ "host": "ip-10-182-139-116", "port": 80, "version": "52c7248a14" }

Run an external service sidekick

If you’re running in the cloud, many services have APIs that can be automated based on actions in the cluster. For example, you may update DNS records or add new containers to a cloud load balancer. Our Example Deployment with fleet [https://github.com/coreos/fleet/blob/master/Documentation/examples/example-deployment.md#service-files] contains a pre-made presence container that updates an Amazon Elastic Load Balancer with new backends.

 Service startup dependencies

Service startup dependencies

Services often depend on other services, and must start in a certain order. For example, an application that depends on a caching system should start after the cache. fleet and Kubernetes express such dependencies in different ways.

fleet: ExecStartPre

Fleet uses the systemd ExecStartPre [Service] directive to ensure a command is run before a service starts [https://coreos.com/fleet/docs/latest/launching-containers-fleet.html#run-a-container-in-the-cluster], and the Requires [Unit] directive to ensure a dependency unit is running before a unit starts.

For instance, one might create a unit file myapp.service:

[Unit]
Description=MyApp
After=docker.service
Requires=docker.service

[Service]
TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill busybox1
ExecStartPre=-/usr/bin/docker rm busybox1
ExecStartPre=/usr/bin/docker pull busybox
ExecStart=/usr/bin/docker run --name busybox1 busybox /bin/sh -c "trap 'exit 0' INT TERM; while true; do echo Hello World; sleep 1; done"
ExecStop=/usr/bin/docker stop busybox1

This unit depends on docker.sevice, and before starting, the application does some housekeeping work with the three ExecStartPre commands which kill, remove, and pull the application’s container.

Kubernetes: init containers

Kubernetes init containers [https://kubernetes.io/docs/concepts/abstractions/init-containers/] operate in a similar way to the ExecStartPre directive in that they:

	Run before a specified Pod.

	Run to completion before the next init container.

	All run to completion before the specified Pod.

The feature is currently a beta feature of Kubernetes v1.5.x, and must be specified in the .metadata.annotations of a Kubernetes manifest file.

Example: init container fetching data

This example uses an init container to download some data. The init container fetches the Kubernetes home page so that the nginx container can serve it:

apiVersion: v1
kind: Pod
metadata:
 name: myapp-pod
 annotations:
 pod.beta.kubernetes.io/init-containers: '[
 {
 "name": "index-page",
 "image": "busybox",
 "command": ["wget", "-O", "/work-dir/index.html", "http://kubernetes.io/index.html"],
 "volumeMounts": [
 {
 "name": "workdir",
 "mountPath": "/work-dir"
 }
]
 }
]'
spec:
 containers:
 - name: frontend
 image: nginx
 ports:
 - containerPort: 80
 volumeMounts:
 - name: workdir
 mountPath: /usr/share/nginx/html
 dnsPolicy: Default
 volumes:
 - name: workdir
 emptyDir: {}

Example: Delaying pod startup

One way to wait for a caching service before starting a primary application is by creating an init container to ping the caching Pod. Once the caching Pod is up and running, the cache checking container exits and the main Pod starts.

Application yaml file:

apiVersion: v1
kind: Service
metadata:
 name: app-service
spec:
 selector:
 app: frontend-label
 ports:
 - name: redis-svc-port
 port: 6379
 clusterIP: None

apiVersion: v1
kind: Pod
metadata:
 name: app-pod
 labels:
 app: frontend-label
 annotations:
 pod.beta.kubernetes.io/init-containers: '[
 {
 "name": "index-page",
 "image": "busybox",
 "command": ["sh", "-c", "until ping redis-service -c 1; do sleep 3; done;"]
 }
]'
spec:
 containers:
 - name: app-container
 image: busybox
 command:
 - sleep
 - "3600"
 ports:
 - containerPort: 6379
 name: redis-pod-port

This manifest specifies an init container which continuously pings the redis-service. Once it successfully reaches that service, the init-container exits and the pod that depends on redis can continue.

You can test this by writing the above into a file app.yaml and monitoring the startup process of the pod:

$ kubectl create -f app.yaml
service "app-service" created
pod "app-pod" created
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
app-pod 0/1 Init:0/1 0 5m

Redis container:

apiVersion: v1
kind: Service
metadata:
 name: redis-service
spec:
 selector:
 app: redis-label
 ports:
 - name: redis-svc-port
 port: 6379
 clusterIP: None

apiVersion: v1
kind: Pod
metadata:
 name: redis-pod
 labels:
 app: redis-label
spec:
 containers:
 - name: redis-container
 image: redis
 ports:
 - name: redis-pod-port
 containerPort: 6379

We can complete the exercise by copying the above into a file redis.yaml to create the pod and service:

$ kubectl create -f redis.yaml
service "redis-service" created
service "redis-pod" created
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
app-pod 0/1 Init:0/1 0 6m
redis-pod 0/1 ContainerCreating 0 5s
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
app-pod 1/1 Running 0 8m
redis-pod 1/1 Running 0 2m

Once the redis-service was created, the app-pod successfully completed initialization.

 CoreOS Container Linux startup process

CoreOS Container Linux startup process

The Container Linux startup process is built on the standard Linux startup process [https://en.wikipedia.org/wiki/Linux_startup_process]. Since this process is already well documented and generally well understood, this document will focus on aspects specific to booting Container Linux.

Bootloader

GRUB [https://www.gnu.org/software/grub/] is the first program executed when a Container Linux system boots. The Container Linux GRUB config [https://github.com/coreos/scripts/blob/9e1c23f3f44d2751076e770f43f7a6db05d49652/build_library/grub.cfg] has several roles.

First, the GRUB config specifies which usr partition to use [https://github.com/coreos/scripts/blob/9e1c23f3f44d2751076e770f43f7a6db05d49652/build_library/grub.cfg#L132] from the two usr partitions Container Linux uses to provide atomic upgrades and rollbacks.

Second, GRUB checks for a file called coreos/first_boot in the EFI System Partition [https://github.com/coreos/scripts/blob/9e1c23f3f44d2751076e770f43f7a6db05d49652/build_library/grub.cfg#L68-L71] to determine if this is the first time a machine has booted. If that file is found, GRUB sets the coreos.first_boot=detected Linux kernel command line parameter. This parameter is used in later stages of the boot process.

Finally, GRUB searches for the initial disk GUID [https://github.com/coreos/scripts/blob/9e1c23f3f44d2751076e770f43f7a6db05d49652/build_library/grub.cfg#L73-L78] (00000000-0000-0000-0000-000000000001) built into Container Linux images. This GUID is randomized later in the boot process so that individual disks may be uniquely identified. If GRUB finds this GUID it sets another Linux kernel command line parameter, coreos.randomize_guid=00000000-0000-0000-0000-000000000001.

Early user space

After GRUB, the Container Linux startup process moves into the initial RAM file system. The initramfs mounts the root filesystem, randomizes the disk GUID, and runs Ignition.

If the coreos.randomize_guid kernel parameter is provided, the disk with the specified GUID is given a new, random GUID.

If the coreos.first_boot kernel parameter is provided and non-zero, Ignition and networkd are started. networkd will use DHCP to set up temporary IP addresses and routes so that Ignition can fetch its configuration from the network.

Ignition

When Ignition runs on Container Linux, it reads the Linux command line, looking for coreos.oem.id. Ignition uses this identifier to determine where to read the user-provided configuration and which provider-specific configuration to combine with the user’s. This provider-specific configuration performs basic machine setup, and may include enabling coreos-metadata-sshkeys@.service (covered in more detail below).

After Ignition runs successfully, if coreos.first_boot was set to the special value detected, Ignition mounts the EFI System Partition and deletes the coreos/first_boot file.

User space

After all of the tasks in the initramfs complete, the machine pivots into user space. It is at this point that systemd begins starting units, including, if it was enabled, coreos-metadata-sshkeys@core.service.

SSH keys

coreos-metadata-sshkeys@core.service is responsible for fetching SSH keys from the machine’s environment. The keys are written to ~core/.ssh/authorized_keys.d/coreos-metadata and update-ssh-keys is run to update ~core/.ssh/authorized_keys. On cloud platforms, the keys are read from the provider’s metadata service. This service is not supported on all platforms and is enabled by Ignition only on those which are supported.

 Metadata

Metadata

In many cases, it is desirable to inject dynamic data into services written by Ignition. Because Ignition itself is static and cannot inject dynamic data into configs, this must be done as the system starts. Container Linux ships with a small utility, coreos-metadata, which fetches information specific to the environment in which Container Linux is running. While this utility works only on officially supported platforms, it is possible to use the same paradigm to write a custom utility.

Each of these examples is written in version 2.0.0 of the config. Ensure that any configuration matches the version that Ignition expects.

etcd2 with coreos-metadata

This config will write a systemd drop-in (shown below) for the etcd2.service. The drop-in modifies the ExecStart option, adding a few flags to etcd2’s invocation. These flags use variables defined by coreos-metadata.service to change the interfaces on which etcd2 listens. coreos-metadata is provided by Container Linux and will read the appropriate metadata for the cloud environment (AWS in this example) and write the results to /run/metadata/coreos. For more information on the supported platforms and environment variables, refer to the coreos-metadata documentation [https://github.com/coreos/coreos-metadata/blob/master/docs/container-linux-legacy].

{
 "ignition": { "version": "2.0.0" },
 "systemd": {
 "units": [{
 "name": "etcd2.service",
 "enable": true,
 "dropins": [{
 "name": "metadata.conf",
 "contents": "[Unit]\nRequires=coreos-metadata.service\nAfter=coreos-metadata.service\n\n[Service]\nEnvironmentFile=/run/metadata/coreos\nExecStart=\nExecStart=/usr/bin/etcd2 --advertise-client-urls=http://${COREOS_EC2_IPV4_PUBLIC}:2379 --initial-advertise-peer-urls=http://${COREOS_EC2_IPV4_LOCAL}:2380 --listen-client-urls=http://0.0.0.0:2379 --listen-peer-urls=http://${COREOS_EC2_IPV4_LOCAL}:2380 --initial-cluster=%m=http://${COREOS_EC2_IPV4_LOCAL}:2380"
 }]
 }]
 }
}

metadata.conf

[Unit]
Requires=coreos-metadata.service
After=coreos-metadata.service

[Service]
EnvironmentFile=/run/metadata/coreos
ExecStart=
ExecStart=/usr/bin/etcd2 \
 --advertise-client-urls=http://${COREOS_EC2_IPV4_PUBLIC}:2379 \
 --initial-advertise-peer-urls=http://${COREOS_EC2_IPV4_LOCAL}:2380 \
 --listen-client-urls=http://0.0.0.0:2379 \
 --listen-peer-urls=http://${COREOS_EC2_IPV4_LOCAL}:2380 \
 --initial-cluster=%m=http://${COREOS_EC2_IPV4_LOCAL}:2380

Custom metadata agent

When Container Linux is used outside of a supported cloud environment (for example, in a PXE booted, bare metal installation), coreos-metadata won’t work. However, it is possible to write a custom metadata service.

This config will write a single service unit with the contents of a metadata agent service (shown below). This unit will not start on its own, because it is not enabled and is not a dependency of any other units. This metadata agent will fetch instance metadata from EC2 and save it to an ephemeral file.

{
 "ignition": { "version": "2.0.0" },
 "systemd": {
 "units": [{
 "name": "metadata.service",
 "contents": "[Unit]\nDescription=EC2 metadata agent\n\n[Service]\nType=oneshot\nEnvironment=OUTPUT=/run/metadata/ec2\nExecStart=/usr/bin/mkdir --parent /run/metadata\nExecStart=/usr/bin/bash -c 'echo \"CUSTOM_EC2_IPV4_PUBLIC=$(curl --url http://169.254.169.254/2009-04-04/meta-data/public-ipv4 --retry 10)\\nCUSTOM_EC2_IPV4_LOCAL=$(curl --url http://169.254.169.254/2009-04-04/meta-data/local-ipv4 --retry 10)\" > ${OUTPUT}'\n"
 }]
 }
}

metadata.service

[Unit]
Description=EC2 metadata agent

[Service]
Type=oneshot
Environment=OUTPUT=/run/metadata/ec2
ExecStart=/usr/bin/mkdir --parent /run/metadata
ExecStart=/usr/bin/bash -c 'echo "CUSTOM_EC2_IPV4_PUBLIC=$(curl\
 --url http://169.254.169.254/2009-04-04/meta-data/public-ipv4\
 --retry 10)\nCUSTOM_EC2_IPV4_LOCAL=$(curl\
 --url http://169.254.169.254/2009-04-04/meta-data/local-ipv4\
 --retry 10)" > ${OUTPUT}'

 Network configuration

Network configuration

Configuring networkd with Ignition is a very straightforward task. Because Ignition runs before networkd starts, configuration is just a matter of writing the desired config to disk. The Ignition config has a specific section dedicated to this.

Each of these examples is written in version 2.0.0 of the config. Ensure that any configuration matches the version that Ignition expects.

Static networking

In this example, the network interface with the name “eth0” will be given the IP address 10.0.1.7. A typical interface will need more configuration and may use all of the options of a network unit [http://www.freedesktop.org/software/systemd/man/systemd.network.html].

{
 "ignition": { "version": "2.0.0" },
 "networkd": {
 "units": [{
 "name": "00-eth0.network",
 "contents": "[Match]\nName=eth0\n\n[Network]\nAddress=10.0.1.7"
 }]
 }
}

This configuration will instruct Ignition to create a single network unit named “00-eth0.network” with the contents:

[Match]
Name=eth0

[Network]
Address=10.0.1.7

When the system boots, networkd will read this config and assign the IP address to eth0.

Using static IP addresses with Ignition

Because Ignition writes network configuration to disk for networkd to use later, statically-configured interfaces will be brought online only after Ignition has run. If static IP configuration is required to download remote configs before Ignition has run, use one of the following two forms of supported kernel command-line arguments.

This format can configure a static IP address on the named interface, or on all interfaces when unspecified.

	ip= to specify the IP address, for example ip=10.0.2.42

	netmask= to specify the netmask, for example netmask=255.255.255.0

	gateway= to specify the gateway address, for example gateway=10.0.2.2

	ksdevice= (optional) to limit configuration to the named interface, for example ksdevice=eth0

This format can be specified multiple times to apply unique static configuration to different interfaces. Omitting the <iface> parameter will apply the configuration to all interfaces that have not yet been configured.

	ip=<ip>::<gateway>:<netmask>:<hostname>:<iface>:none[:<dns1>[:<dns2>]], for example ip=10.0.2.42::10.0.2.2:255.255.255.0::eth0:none:8.8.8.8:8.8.4.4

Bonded NICs

In this example, all of the network interfaces whose names begin with “eth” will be bonded together to form “bond0”. This new interface will then be configured to use DHCP.

{
 "ignition": { "version": "2.0.0" },
 "networkd": {
 "units": [
 {
 "name": "00-eth.network",
 "contents": "[Match]\nName=eth*\n\n[Network]\nBond=bond0"
 },
 {
 "name": "10-bond0.netdev",
 "contents": "[NetDev]\nName=bond0\nKind=bond"
 },
 {
 "name": "20-bond0.network",
 "contents": "[Match]\nName=bond0\n\n[Network]\nDHCP=true"
 }
]
 }
}

 What is Ignition?

What is Ignition?

Ignition is a new provisioning utility designed specifically for Container Linux, which allows you to manipulate disks during early boot. This includes partitioning disks, formatting partitions, writing files (regular files, systemd units, networkd units, and more), and configuring users. On the first boot, Ignition reads its configuration from a source-of-truth (remote URL, network metadata service, or hypervisor bridge, for example) and applies the configuration.

A series of example configs [https://github.com/coreos/ignition/blob/master/doc/examples] are provided for reference.

Ignition vs coreos-cloudinit

Ignition solves many of the same problems as coreos-cloudinit [https://github.com/coreos/coreos-cloudinit] but in a simpler, more predictable, and more flexible manner. This is achieved with two major changes: Ignition only runs once and it does not handle variable substitution. Ignition has also fixed a number of pain points with regard to configuration.

Instead of YAML, Ignition uses JSON for its configuration format. JSON’s typing immediately eliminates problems like “off” being rewritten as “false”, the “#cloud-config” header being stripped because comments shouldn’t have meaning, and confusion around whether those file permissions were written in octal or decimal. Ignition’s configuration is also versioned, which allows future development without persistent backward compatibility.

Ignition only runs once

Even though Ignition only runs once, during the first boot of the system, it packs a powerful punch. Because Ignition runs so early in the boot process (in the initramfs, to be exact), it is able to repartition disks, format filesystems, create users, and write files, all before the userspace begins to boot.

Because Ignition runs so early in the boot process, the network config is available for networkd to read when it first starts, and systemd services are already written to disk when systemd starts. Configuring the network is no longer an issue. This results in a simple startup, a faster startup, and the ability to accurately inspect the unit dependency graphs.

No variable substitution

Because Ignition only runs once, there’s no reason for it to incorporate dynamic data (like floating IP addresses, or compute regions).

Instead, use Ignition to write static files and leverage systemd’s environment variable expansion to insert dynamic data. The Ignition config should install a service which fetches the necessary runtime data, then any services which need this data (such as etcd or fleet) can rely on the installed service and source in their output. The result is that the data is only collected if and when it is needed. For supported platforms, Container Linux provides a small utility (coreos-metadata.service) to help fetch this data.

The lack of variable substitution in Ignition has an added benefit of leveling the playing field when it comes to compute providers. The user’s experience is no longer crippled because the metadata for their platform isn’t supported. It is possible to write a custom metadata agent [https://github.com/coreos/ignition/blob/master/doc/examples.md#custom-metadata-agent] to fetch the necessary data.

When is Ignition executed

On boot, GRUB checks the EFI System Partition for a file at coreos/first_boot and sets coreos.first_boot=detected if found. The coreos.first_boot parameter is processed by a systemd-generator [http://www.freedesktop.org/software/systemd/man/systemd.generator.html] in the initramfs [https://www.kernel.org/doc/Documentation/filesystems/ramfs-rootfs-initramfs.txt] and if the parameter value is non-zero, the Ignition units are set as dependencies of initrd.target, causing Ignition to run. If the parameter is set to the special value detected, the coreos/first_boot file is deleted after Ignition runs successfully.

Note that PXE [https://github.com/coreos/ignition/blob/master/doc/supported-platforms] deployments don’t use GRUB to boot, so coreos.first_boot=1 must be added to the boot arguments in order for Ignition to run. detected should not be specified so Ignition will not attempt to delete coreos/first_boot.

Providing Ignition a config

Ignition can read its config from a number of different locations, but only from one at a time. When running Container Linux on the supported cloud providers, Ignition will read its config from the instance’s userdata. This means that if Ignition is being used, it will not be possible to use other tools which also use this userdata (such as coreos-cloudinit). Bare metal installations and PXE boots can use the kernel boot parameters to point Ignition at the config.

Where is Ignition supported?

The full list of supported platforms [https://github.com/coreos/ignition/blob/master/doc/supported-platforms] is provided and will be kept up-to-date as development progresses.

Ignition is under active development. Expect to see support for more images in the coming months.

 Migration of Kubernetes cluster deployment state

Migration of Kubernetes cluster deployment state

The deployment state of the Kubernetes cluster is stored in etcd. If you’re concerned about backing up this information, you should look into backing up the etcd data directory for each etcd instance in your cluster. This can be done via an etcd-based backup strategy [https://github.com/coreos/etcd/tree/master/contrib/systemd/etcd2-backup-coreos], or via snapshotting the underlying block device that backs the etcd data directory. Backing up Kubernetes clusters is not the purpose of this document.

This document’s primary purpose is to show how to migrate the deployment state from one Kubernetes cluster to another. The clusters may have different versions, pod/service network cidrs, number of nodes, etc.

For the remainder of this document, the cluster that is being dumped will be referred to as the source cluster. The cluster that is being restored to will be called the target cluster. The goal is to migrate state from the source cluster to the target cluster.

This migration process boils down to selectively omitting state that is not portable between clusters, as well as making some assumptions about the clusters we’re dealing with. Those assumptions include:

	kube-dns add-on This allows abstracting away the services’ clusterIPs, which is inherentely non-portable across clusters with different serviceCIDRS.

	api object compatibility Any api object type (eg: replicaset) that is dumped from the source cluster must be supported by the target cluster.

As a general rule, if the target cluster’s Kubernetes version is >= source cluster’s Kubernetes version, this will not be a problem.

	blank target slate The target cluster to has no deployment state beyond a “stock” cluster. In the CoreOS case, the stock cluster state is everything in the kube-system namespace along with the service token in the default namespace.

If the target cluster has other pre-existing state, more precautions must be taken to ensure there are no undesired interactions between pre-existing resources on the target cluster and the dump coming from source cluster.

Name conflicts are easy to defect, but more subtle issues like services selecting unintended pre-existing pods is another more subtle situation that can arise. We will assume blank target slate for the remainder of this document.

As of now, this is not entirely supported upstream. This get --export flag is supposed to do something like this, but leaves plenty of state that we do not consider to be portable in this case. github issue [https://github.com/kubernetes/kubernetes/issues/21582].

We’ll explain step-by-step how the CoreOS infrastructure team migrates deployments between Kubernetes clusters today.

Dump from the source cluster

Create a directory to hold your dump files:

mkdir ./cluster-dump

First, get a list of all namespaces that are not kube-system or default and record them to a file on disk. This represents the list of namespaces that we want to migrate:

kubectl get --export -o=json ns | \
jq '.items[] |
	select(.metadata.name!="kube-system") |
	select(.metadata.name!="default") |
	del(.status,
 .metadata.uid,
 .metadata.selfLink,
 .metadata.resourceVersion,
 .metadata.creationTimestamp,
 .metadata.generation
)' > ./cluster-dump/ns.json

For each of these namespaces, dump all services, controllers (rc,ds,replicaset,etc), secrets and daemonsets to a file on disk. Strip any non-portable fields from the objects. If you wish to migrate additional controller resource types (replicasets, deployments, etc), make sure to add them to the resource type list:

for ns in $(jq -r '.metadata.name' < ./cluster-dump/ns.json);do
 echo "Namespace: $ns"
 kubectl --namespace="${ns}" get --export -o=json svc,rc,secrets,ds | \
 jq '.items[] |
 select(.type!="kubernetes.io/service-account-token") |
 del(
 .spec.clusterIP,
 .metadata.uid,
 .metadata.selfLink,
 .metadata.resourceVersion,
 .metadata.creationTimestamp,
 .metadata.generation,
 .status,
 .spec.template.spec.securityContext,
 .spec.template.spec.dnsPolicy,
 .spec.template.spec.terminationGracePeriodSeconds,
 .spec.template.spec.restartPolicy
)' >> "./cluster-dump/cluster-dump.json"
done

Notice that pods and service tokens are explicitly omitted altogether, as they are inherently non-portable resources that are created and managed by other components. The general rule for what is portable across heterogenous clusters is is “services (resolved via cluster DNS), controllers and secrets that aren’t service tokens”.

Make sure you clean up these JSON files. They contain your secrets!

Restore to target cluster

Create the set of namespaces needed for your deployment state:

kubectl create -f cluster-dump/ns.json

Restore the resource state:

kubectl create -f cluster-dump/cluster-dump.json

 Getting Started with CoreOS and Kubernetes

Getting Started with CoreOS and Kubernetes

Kubernetes [http://kubernetes.io/] is a distributed container platform originally developed by Google. CoreOS has developed a number of technologies that are complimentary or required by Kubernetes, including etcd, flannel, and fleet.

Differences between fleet and Kubernetes

Fleet is a low level distributed init system. Fleet is useful for “booting” a distributed system, such as Kubernetes. Fleet is great for tools that are building products that are platforms themselves. Kubernetes is intended a complete distributed platform that includes service discovery, overlay networking, and robust APIs.

Fleet should be used if you are building your own platform that orchestrates containers or the host system.

Kubernetes is recommended for most operations teams that are looking to deploy containers against a distributed platform.

Deploy Kubernetes on CoreOS

Please refer to the CoreOS Multinode Cluster [https://github.com/GoogleCloudPlatform/kubernetes/blob/v1.0.0/docs/getting-started-guides/coreos/coreos_multinode_cluster] guide for the latest instructions for running Kubernetes on CoreOS.

Getting started with Kubernetes

Refer to the Kubernetes User Guide [https://github.com/GoogleCloudPlatform/kubernetes/blob/v1.0.0/docs/user-guide] for detailed instructions on how to use Kubernetes.

 Kubernetes Networking

Kubernetes Networking

Network Model

The Kubernetes network model outlines three methods of component communication:

	Pod-to-Pod Communication

	Each Pod in a Kubernetes cluster is assigned an IP in a flat shared networking namespace. This allows for a clean network model where Pods, from a networking perspective, can be treated much like VMs or physical hosts.

	Pod-to-Service Communication

	Services are implemented by assigning Virtual IPs which clients can access and are transparently proxied to the Pods grouped by that service. Requests to the Service IPs are intercepted by a kube-proxy process running on all hosts, which is then responsible for routing to the correct Pod.

	External-to-Internal Communication

	Accessing services from outside the cluster is generally implemented by configuring external loadbalancers which target all nodes in the cluster. Once traffic arrives at a node, it is routed to the correct Service backends via the kube-proxy.

See Kubernetes Networking [https://kubernetes.io/docs/admin/networking/] for more detailed information on the Kubernetes network model and motivation.

Port allocation

The information below describes a minimum set of port allocations used by Kubernetes components. Some of these allocations will be optional depending on the deployment (e.g. if flannel or Calico is being used). Additionally, there are likely additional ports a deployer will need to open on their infrastructure (e.g. 22/ssh).

Master Node Inbound

| Protocol | Port Range | Source | Purpose |
———–|————|——————————————-|————————|
TCP	443	Worker Nodes, API Requests, and End-Users	Kubernetes API server.
UDP	8285	Master & Worker Nodes	flannel overlay network - udp backend. This is the default network configuration (only required if using flannel)
UDP	8472	Master & Worker Nodes	flannel overlay network - vxlan backend (only required if using flannel)

Worker Node Inbound

| Protocol | Port Range | Source | Purpose |
———–|————-|——————————–|————————————————————————|
TCP	10250	Master Nodes	Worker node Kubelet API for exec and logs.
TCP	10255	Heapster	Worker node read-only Kubelet API.
TCP	30000-32767	External Application Consumers	Default port range for external service [http://kubernetes.io/docs/user-guide/services/#publishing-services---service-types] ports. Typically, these ports would need to be exposed to external load-balancers, or other external consumers of the application itself.
TCP	ALL	Master & Worker Nodes	Intra-cluster communication (unnecessary if vxlan is used for networking)
UDP	8285	Master & Worker Nodes	flannel overlay network - udp backend. This is the default network configuration (only required if using flannel)
UDP	8472	Master & Worker Nodes	flannel overlay network - vxlan backend (only required if using flannel)
TCP	179	Worker Nodes	Calico BGP network (only required if the BGP backend is used)

etcd Node Inbound

| Protocol | Port Range | Source | Purpose |
———–|————|—————|———————————————————-|
| TCP | 2379-2380 | Master Nodes | etcd server client API |
| TCP | 2379-2380 | Worker Nodes | etcd server client API (only required if using flannel or Calico). |

Advanced Configuration

The CoreOS Kubernetes documentation describes a software-defined overlay network (i.e. flannel [https://coreos.com/flannel/docs/latest/flannel-config.html]) to manage the Kubernetes Pod Network. However, in some cases a deployer may want to make use of existing network infrastructure to manage the Kubernetes network themselves e.g. using Calico [http://docs.projectcalico.org/v2.0/getting-started/kubernetes/]

The following requirements must be met by your existing infrastructure to use Tectonic with a self-managed network.

Pod-to-Pod Communication

Each pod in the Kubernetes cluster will be assigned an IP that is expected to be routable from all other hosts and pods in the Kubernetes cluster.

An easy way to achieve this is to use Calico. The Calico agent is already running on each node to enforce network policy. Starting it with the CALICO_NETWORKING environment variable set to true will cause it to run a BGP agent inside the Calico agent pod. These BGP agents will automatically form a full mesh network to exchange routing information. This allows a single large IP range to be used across your whole cluster and IP addresses to be efficiently assigned from it. To peer with your existing BGP infrastructure follow this guide [https://github.com/projectcalico/calico-containers/blob/v0.19.0/docs/bgp]. If your Kubernetes cluster is hosted on an L2 network [http://docs.projectcalico.org/v2.0/reference/private-cloud/l2-interconnect-fabric] (e.g. in your own datacenter or on AWS) there is no need to peer with your routers.

An alternative way to achieve this is to first assign an IP range to each host in your cluster.
Requests to IPs in an assigned range would need to be routed to that host via your network infrastructure.
Next, the host is configured such that each pod launched on the host is assigned an IP from the host range.

For example:

	Node A assigned IP range 10.0.1.0/24

	Node B assigned IP range 10.0.2.0/24.

When a Pod is launched on Node A it might be assigned 10.0.1.33 and on Node B a pod could be assigned 10.0.2.144.
It would then be expected that both pods would be able to reach each other via those IPs, as if they were on a flat network.

The actual allocation of Pod IPs on the host can be achieved by configuring Docker to use a linux bridge device configured with the correct IP range.
When a new Kubernetes Pod is launched, it will be assigned an IP from the range assigned to the linux bridge device.

To achieve this network model, there are various methods that can be used. See the Kubernetes Networking [https://kubernetes.io/docs/admin/networking/#how-to-achieve-this] documentation for more detail.

Pod-to-Service Communication

The service IPs are assigned from a range configured in the Kubernetes API Server via the --service-ip-range flag. These are virtual IPs which are intercepted by a kube-proxy process running locally on each node. These IPs do not need to be routable off-host, because IPTables rules will intercept the traffic, and route to the proper backend (usually the pod network).

A requirement of a manually configured network is that the service-ip-range does not conflict with existing network infrastructure. The CoreOS Kubernetes guides default to a service-ip-range of 10.3.0.0/24, but that can easily be changed if this conflicts with existing infrastructure.

External-to-Internal Communication

IP addresses assigned on the pod network are typically not routable outside of the cluster unless you’re using Calico and have peered with your routers [https://github.com/projectcalico/calico-containers/blob/v0.19.0/docs/ExternalConnectivity]. This isn’t an issue since most communication between your applications stays within the cluster, as described above. Allowing external traffic into the cluster is generally accomplished by mapping external load-balancers to specifically exposed services in the cluster. This mapping allows the kube-proxy process to route the external requests to the proper pods using the cluster’s pod-network.

In a manually configured network, it may be necessary to open a range of ports to outside clients (default 30000-32767) for use with “external services”. See the Kubernetes Service [http://kubernetes.io/docs/user-guide/services/#publishing-services---service-types] documentation for more information on external services.

 Kubernetes network troubleshooting on CoreOS Container Linux

Kubernetes network troubleshooting on CoreOS Container Linux

Kubernetes networking issues can be debugged with familiar tools, once the isolated nature of the container abstraction is taken into account. This document explains some of the best places to start troubleshooting when network issues arise.

First stop: DNS debugging

A common issue with Kubernetes networking is trouble with kube-dns, the Kubernetes DNS system. The official Kubernetes documentation includes a guide to checking whether a cluster’s Kubernetes DNS works [https://github.com/kubernetes/kubernetes/blob/release-1.2/cluster/addons/dns/README.md#how-do-i-test-if-it-is-working].

Another technique is to forward a local port to the kube-dns pod’s port 53:

kubectl get pods --namespace=kube-system -l k8s-app=kube-dns \
-o template --template="{{range.items}}{{.metadata.name}}{{end}}" \
| xargs -I{} kubectl port-forward --namespace=kube-system {} 5300:53

This one-liner finds the pod in the kube-system namespace whose k8s-app property is kube-dns, and uses xargs to format that pod’s name for a kubectl port-forward command. The result is that local port 5300 is forwarded to the pod’s port 53. This allows host DNS tools to look up Kubernetes hostnames at your machine’s port 5300:

$ dig +vc -p 5300 @127.0.0.1 frontend.default.svc.cluster.local

; <<>> DiG 9.10.3-P4-RedHat-9.10.3-12.P4.fc23 <<>> +vc -p 5300 @127.0.0.1 frontend.default.svc.cluster.local
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 157
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;frontend.default.svc.cluster.local. IN A

;; ANSWER SECTION:
frontend.default.svc.cluster.local. 30 IN A 10.3.0.119

;; Query time: 188 msec
;; SERVER: 127.0.0.1#5300(127.0.0.1)
;; WHEN: Fri Apr 29 07:24:30 EDT 2016
;; MSG SIZE rcvd: 68

The next example shows a failed dig lookup of a service hostname that was expected to exist, but does not. Note the lack of an ANSWER SECTION, indicating no such hostname was found:

$ dig +vc -p 5300 @127.0.0.1 test-service.default.svc.cluster.local

; <<>> DiG 9.10.3-P4-RedHat-9.10.3-12.P4.fc23 <<>> +vc -p 5300 @127.0.0.1 test-service.default.svc.cluster.local
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 60543
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0

;; QUESTION SECTION:
;test-service.default.svc.cluster.local. IN A

;; AUTHORITY SECTION:
cluster.local. 60 IN SOA ns.dns.cluster.local. hostmaster.skydns.local. 1461927600 28800 7200 604800 60

;; Query time: 119 msec
;; SERVER: 127.0.0.1#5300(127.0.0.1)
;; WHEN: Fri Apr 29 07:35:33 EDT 2016
;; MSG SIZE rcvd: 117

Debugging Docker bridge and other host networking issues on CoreOS Container Linux

If you suspect the issue is actually with the host’s networking, it may seem frustrating that Container Linux does not include some of the standard network utilities like tcpdump or nmap. However, Container Linux provides the toolbox, a special container that can install and run a complete userland, without needing everything installed on the base system.

Run the command toolbox and Container Linux will launch a container from the “Fedora” image, downloading it first if necessary. This container is executed with all kernel capabilities, mounts local filesystems for inspection, and attaches directly to the host network. After running the toolbox command, you will be at a shell inside this privileged container.

Once inside the toolbox container, install the desired tools:

dnf install -y [package] [package] [package]...

Run debugging tools in the toolbox:

tcpdump -i docker0

Exit the toolbox container by hitting Ctrl+] three times to stop it, leaving the base system unchanged. The downloaded container image will remain in the local image store on disk, but can be manually removed.

A first invocation of the toolbox command looks something like this:

core@test-inst ~ $ toolbox
latest: Pulling from library/fedora
6888fc827a3f: Pull complete
9bdb5101e5fc: Pull complete
Digest: sha256:1fa98be10c550ffabde65246ed2df16be28dc896d6e370dab56b98460bd27823
Status: Downloaded newer image for fedora:latest
core-fedora-latest
Spawning container core-fedora-latest on /var/lib/toolbox/core-fedora-latest.
Press ^] three times within 1s to kill container.
[root@test-inst ~]# dnf install -y iproute tcpdump nmap
[...DNF output omitted...]

Installed:
 iproute.x86_64 4.1.1-3.fc23 libpcap.x86_64 14:1.7.4-1.fc23
 linux-atm-libs.x86_64 2.5.1-13.fc23 nmap.x86_64 2:7.12-1.fc23
 nmap-ncat.x86_64 2:7.12-1.fc23 python.x86_64 2.7.11-3.fc23
 python-libs.x86_64 2.7.11-3.fc23 python-pip.noarch 7.1.0-1.fc23
 python-setuptools.noarch 18.0.1-2.fc23 tcpdump.x86_64 14:4.7.4-3.fc23

Complete!
[root@test-inst ~]# tcpdump -i docker0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on docker0, link-type EN10MB (Ethernet), capture size 262144 bytes
[...]

Debugging Kubernetes pod issues

Many pod network issues come down to container networking. Access to the container’s network namespace is needed to troubleshoot these issues. Gaining access to a container namespace boils down to finding the container ID, and sometimes mapping it to the process ID running inside the container.

Finding the ID of the right container

You can get the ID of the container(s) in a pod with kubectl describe:

$ kubectl describe pod redis-slave-1691881626-d3aft
[...]
Container ID: docker://7236796e4f380a081d4c7538bfde2c132dd875fc294cd80df8d31e1cc76f8726
[...]

Here we’re interested in the part after “docker://” – and in fact only the first 12 characters of that alphanumeric ID are usually needed.

If the pod has more than one container, additional examination of the pod manifest and/or kubectl get logs output should reveal the container ID to target.

Once you have the right container ID, you can target that container for debugging.

Executing a shell in the target container

If the container includes your desired utility (such as busybox or another shell), execute it directly in the target container:

In Docker: docker exec -ti [target container ID] [path to utility inside container, e.g. /bin/sh]

In rkt: rkt enter [target container ID] [path to utility inside container]

Attaching a debug container to the target container

Sometimes a container does not include a shell. A utility container with a shell and other debugging tools can be attached to the target container’s network namespace.

For Docker containers:

Docker can attach one container to another container’s network namespace. For example, a busybox container can be attached to the namespace, providing a shell to drive basic debugging tools:

docker run -ti --net container:[target container ID] [debug container image] [path to utility inside container]

This example connecting to port 6379, which is active in the target redis container, but failing to connect on port 8080, where no container process is listening:

core@k8s-onenode-1461695566 ~ $ docker run -ti --net container:7236796e4f38 \
--name busybox-diag busybox /bin/sh
/ # nc localhost 6379
/ # nc localhost 8080
nc: can't connect to remote host (127.0.0.1): Connection refused
/ #

For rkt containers:

Attach to rkt containers by using the namespace entry command, nsenter, to invoke rkt and another container with the --net=host option. This new container thinks it is attaching to the host network, but the “host” network it sees is actually the network namespace of the target container. To find a target process ID in a rkt container:

$ rkt status [container ID]

Once you have the target process ID, spawn the rkt debugging container, passing the target PID to nsenter:

nsenter -n -t [target PID] rkt run --net=host --interactive [debugging container image] --exec [program]

Here’s a complete example showing a connection to port 12345 on the target container:

core@k8s-onenode-1461695566 ~ $ rkt list
UUID APP IMAGE NAME STATE CREATED STARTED NETWORKS
32f37e3e busybox registry-1.docker.io/library/busybox:latest running 1 minute ago 1 minute ago default:ip4=172.16.28.2
ff12150d hyperkube quay.io/coreos/hyperkube:v1.2.0_coreos.1 running 2 days ago 2 days ago
core@k8s-onenode-1461695566 ~ $ rkt status 32f37e3e
state=running
created=2016-04-29 10:15:56 +0000 UTC
started=2016-04-29 10:15:56 +0000 UTC
networks=default:ip4=172.16.28.2
pid=4272
exited=false
core@k8s-onenode-1461695566 ~ $ sudo nsenter -n -t 4272 \
rkt run --net=host --interactive --insecure-options=image \
docker://busybox --exec /bin/sh
image: using image from local store for image name coreos.com/rkt/stage1-coreos:1.2.1
image: using image from local store for url docker://busybox
/ # nc localhost:12345
foo
bar

This process can also be adapted to attach rkt containers to a Docker container’s network namespace. In that case, retrieve the PID of the entrypoint in the Docker container this way:

docker inspect -f '{{.State.Pid}}' [container ID]

 Overview of a Pod

Overview of a Pod

A Kubernetes pod is a group of containers that are deployed together on the same host. If you frequently deploy single containers, you can generally replace the word “pod” with “container” and accurately understand the concept.

Pods operate at one level higher than individual containers because it’s very common to have a group of containers work together to produce an artifact or process a set of work.

For example, consider this pair of containers: a caching server and a cache “warmer”. You could build these two functions into a single container, but now they can each be tailored to the specific task and shared between different projects/teams.

Another example is an app server pod that contains three separate containers: the app server itself, a monitoring adapter, and a logging adapter. The logging and monitoring containers could be shared across all projects in your organization. These adapters could provide an abstraction between different cloud monitoring vendors or other destinations.

Any project requiring logging or monitoring can include these containers in their pods, but not have to worry about the specific logic. All they need to do is send logs from the app server to a known location within the pod. How does that work? Let’s walk through it.

Shared Namespaces, Volumes and Secrets

By design, all of the containers in a pod are connected to facilitate intra-pod communication, ease of management and flexibility for application architectures. If you’ve ever fought with connecting two raw containers together, the concept of a pod will save you time and is much more powerful.

Shared Network

All containers share the same network namespace & port space. Communication over localhost is encouraged. Each container can also communicate with any other pod or service within the cluster.

Shared Volumes

Volumes attached to the pod may be mounted inside of one or more containers. In the logging example above, a volume named logs is attached to the pod. The app server would log output to logs mounted at /volumes/logs and the logging adapter would have a read-only mount to the same volume. If either of these containers needed to restarted, the log data is preserved instead of being lost.

There are many types of volumes supported by Kubernetes, including native support for mounting GitHub repos, network disks (EBS, NFS, etc), local machine disks, and a few special volume types, like secrets.

Here’s an example pod:

apiVersion: v1
kind: Pod
metadata:
 name: example-app
 labels:
 app: example-app
 version: v1
 role: backend
spec:
 containers:
 - name: java
 image: companyname/java
 ports:
 - containerPort: 443
 volumeMounts:
 - mountPath: /volumes/logs
 name: logs
 - name: logger
 image: companyname/logger:v1.2.3
 ports:
 - containerPort: 9999
 volumeMounts:
 - mountPath: /logs
 name: logs
 - name: monitoring
 image: companyname/monitoring:v4.5.6
 ports:
 - containerPort: 1234

Resources

Resource limits such as CPU and RAM are shared between all containers in the pod.

Creating Pods

Pods are considered ephemeral “cattle” and won’t survive a machine failure and may be terminated for machine maintenance. For high resiliency, pods are managed by a replication controller, which creates and destroys replicas of pods as needed. Individual pods can also be created outside of a replication controller, but this isn’t a common practice.

Kubernetes services should always be used to expose pod(s) to the rest of the cluster in order to provide the proper level of abstraction since individual pods will come and go.

Replication controllers and services use the pod labels to select a group of pods that they interact with. Your pods will typically have labels for the application name, role, environment, version, etc. Each of these can be combined in order to select all pods with a certain role, a certain application, or a more complex query. The label system is extremely flexible by design and experimentation is encouraged to establish the practices that work best for your company or team.

 Are you familiar with replication controllers and services?

 Replication Controller overview
 Services overview
 Back to Listing

 Overview of a Replication Controller

Overview of a Replication Controller

A replication controller is one of the features of Kubernetes that you’ll interact with on a regular basis to launch one or more instances of your applications. Replication controllers are “cheap” and you can have many of them configured in your cluster.

The logic of a replication controller is simple by design, but enables powerful, flexible deployment topologies for your development teams.

Each replication controller has a desired state that is managed by the application deployer. When a change is made to the desired state, a reconciliation loop detects this and attempts to mutate the existing state in order to match the desired state. For example, if you increase the desired instance count from 3 to 4, the replication controller would see that one new instance needs to be created and launch it somewhere on the cluster. This reconciliation process applies to any modified property of the pod template.

Defining a Pod Template

In Kubernetes, the base unit of deployment is a pod (intro to pods), which is a group of containers that work together and therefore are logically grouped. The replication controller stores a pod template in order to create new pods if needed.

Like all Kubernetes features, the replication controller makes use of label queries to inspect only the pods that it is responsible for. For example, a “frontend webapp” replication controller might be responsible for all pods matching the labels app=webapp and role=frontend. The pod template should contain these labels in order for the replication controller to manage the pods that it creates.

[image: Kubernetes Replication Controller and Labels]Here’s an example replication controller definition:

apiVersion: v1
kind: ReplicationController
metadata:
 name: nginx-controller
spec:
 replicas: 2
 selector:
 role: load-balancer
 template:
 metadata:
 labels:
 role: load-balancer
 spec:
 containers:
 - name: nginx
 image: coreos/nginx
 ports:
 - containerPort: 80

Examples

A common pattern for deploying a new version of an application is to create a new replication controller per deployment. Creation can be done manually by a developer or automated via the API as part of a CI/CD pipeline. Different deployment models are possible depending on your treatment of the labels on the pods created.

Both of the examples below reference another Kubernetes feature: services. Be sure to read the intro to services to understand the routing and load balancing built in to Kubernetes.

Rolling Deployment

 [image: Kubernetes Rolling Deployment]
To execute a rolling deployment without downtime you need three Kubernetes objects: a service and two replication controllers, one for version 1 and one for version 2.

The service should be configured with a fairly broad label query that will match pods created by both replication controllers, such as app=webapp, env=prod. Each replication controller could optionally set additional labels such as version=X.

The rate of the deployment is controlled by the speed at which the desired count of the version 1 replication controller is turned down, and version 2 is turned up. This process could be executed manually, or more sophisticated software could be written to monitor error rates and other metrics to influence the process or halt it altogether.

Traffic Shift

 [image: Kubernetes Traffic Shift Deployment]
If your application requires all traffic to shift to the new version at the same time, a similar method can be used as above. The same three Kubernetes objects are used, but the sequence of events is different.

First, the service has a more specific label query that includes the version of the software running, such as app=webapp, env=prod, version=1. Instead of modifying the desired count of each replication controller, the version 2 controller is configured to support the same amount of load as version 1.

After all of the pods are started (and warmed if needed), the label query of the service is modifed to include version 2 instead of version 1. All traffic has now been shifted towards the new version.

An advantage of this strategy is that failing back to the old version is a simple label query modification. The elegance and flexibility of Kubernetes labels shows here. Once version 2 is confirmed to be stable, the old replication controller and pods can be terminated.

The Reconciliation Loop in Detail

The design of the replication controller epitomizes the best practices baked into Kubernetes from Google’s decade of container experience. The elegant combination of a simple infinite loop and user-provided desired state leverages the strengths of all parties involved. Developers on your team can describe what they want and let the software figure out how to best make that desire a reality.

Substantial efficiency gains are experienced as the software logic gets smarter while the humans in the loop don’t even have to change their workflow. Compare this to writing an instruction set of how to turn a vanilla group of Linux machines into a working installation by executing a long set of steps in order and hoping nothing goes wrong or an important assumption hasn’t changed.

Pod Logic

The pod handling rules in the replication controller act a little differently than other cluster software. A few common scenarios are covered below:

	When the pod template of a replication controller is updated but the replica count isn’t modified, new pods will use the latest template, but existing pods won’t be updated. This prevents unnecessary churn for your application. If this functionality is desired, pods can programatically be terminated via API and new pods will be started based on the updated template.

	When a replication controller is deleted, the pods matching its label query aren’t terminated. There are two reasons for this: First, the pods may still be in active rotation for a service. Second, another replication controller may have an overlapping label query and will continue to utilize the pods.

Handling Errors

The replication controller is constantly trying to converge the existing state into the desired state. If the desired state isn’t possible because of a misconfiguration, the controller will keep trying and failure events, such as invalid pull credentials, etc., will be generated.

To debug a single pod, you can change its configured labels to prevent it from matching the replication controller’s label query, thus allowing you manual control to inspect or terminate it when you desire.

If the replica controller’s label query doesn’t overlap with the labels applied to your pods, Kubernetes will prevent the template from being saved, which will spare you from many orphaned pods from being created.

If you run out of available machines to run new pods, the pods will sit in a “pending” status until more capacity is added to the cluster.

For more information on replication controllers, the Kubernetes documentation [http://kubernetes.io/docs/user-guide/replication-controller/] is the best source.

 Are you familiar with pods and services?

 Services overview
 Pods overview
 Back to Listing

 Overview of a Service

Overview of a Service

A service is a grouping of pods that are running on the cluster. Services are “cheap” and you can have many services within the cluster. Kubernetes services can efficiently power a microservice architecture.

Services provide important features that are standardized across the cluster: load-balancing, service discovery between applications, and features to support zero-downtime application deployments.

Each service has a pod label query which defines the pods which will process data for the service. This label query frequently matches pods created by one or more replication controllers. Powerful routing scenarios are possible by updating a service’s label query via the Kubernetes API with deployment software.

IP Address and Routing

When creating a service, one or more ports can be configured. A common example would be listening on port 80 for HTTP and port 443 for HTTPS.

A core design feature of Kubernetes is a routable IP address for every service and pod in the cluster. Assigning IPs this way eliminates port conflicts between applications across the cluster. This allows any application team to bind to any port they require instead of reconfiguring databases or web servers to listen on non-standard ports.

Google learned this lesson the hard way over their decade of experience deploying this type of infrastructure. Kubernetes empowers you to avoid these mistakes before years of cruft, complexity and technical debt build up.

While this design decision complicates the networking configuraton slightly, your operations team can set up and configure flannel [https://coreos.com/flannel], which is an open-source project designed by CoreOS to enable this type of routing for Kubernetes.

 [image: Kubernetes Service]
Here’s the JSON representation of the frontend service:

{
 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {
 "name": "Frontend Service"
 },
 "spec": {
 "selector": {
 "app": "webapp",
 "role": "frontend"
 },
 "ports": [
 {
 "name": "https",
 "protocol": "TCP",
 "port": 443,
 "targetPort": 443
 }
]
 }
}

Let’s take a closer look at some of the built-in service functionality:

Service Discovery

Kubernetes services are designed to be a stable abstraction point between the different components of your applications. Contrast this with pods which are being created and destroyed with each software deployment or any time a service requires more capacity.

Each service has a unique IP address and a DNS hostname. Applications that consume this service can be manually configured to use either the IP address or the hostname and the traffic will be load-balanced to the correct pods. SRV-based discovery is also configured by default for all ports the service is listening on.

Keep in mind that DNS libraries used in many programming languages don’t properly respect TTLs and will cache DNS lookups longer than expected. For this reason, round robin DNS isn’t used unless specifically enabled. Utilizing the service’s IP address will completely avoid this issue.

To do automatic service discovery, environment variables containing the IP address of each service in the cluster are injected into all containers. For example, a service named “redis-master” could be accessed from a pod by using information stored in these variables:

REDIS_MASTER_SERVICE_HOST=10.0.0.11
REDIS_MASTER_SERVICE_PORT=6379
REDIS_MASTER_PORT=tcp://10.0.0.11:6379
REDIS_MASTER_PORT_6379_TCP=tcp://10.0.0.11:6379
REDIS_MASTER_PORT_6379_TCP_PROTO=tcp
REDIS_MASTER_PORT_6379_TCP_PORT=6379
REDIS_MASTER_PORT_6379_TCP_ADDR=10.0.0.11

Discovery of Resources Outside the Cluster

A service can also point to an external resource such as a cloud database or microservice that doesn’t run on the Kubernetes cluster. Using a Kubernetes service to point outside the cluster allows you to execute service discovery from your pods just like a service running in the cluster. See the upstream Kubernetes documentation [https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/user-guide/services.md#services-without-selectors] for more details.

Each application development team can choose which method (IP, DNS, etc) best matches their workflow. The important takeaway is that service discovery is standardized across the cluster and can be depended on by all users.

Load Balancing

Services are automatically configured to load balance traffic to pods matching the label query. A random algorithm is used and is currently the only option. Session affinity can be configured to send traffic to pods by client IP.

Health Checking Pods

Services respect the health checking parameters built into pods and traffic is only sent to pods that are healthy and started correctly.

Disable Load Balancing via Headless Services

If your application doesn’t require load-balancing or a fixed service IP, a “headless” service can be created. No load-balancing or proxying will be done for this service.

A DNS query for this service will return a list of A records that can be used by your application or custom logic to select which IP to use.

Zero Downtime Deployments

During a deployment, new pods will be launched, running the updated version of your software. While this deployment is in progress, inbound traffic is being routed to the pods matching the service’s pod label query.

Modifying this label query to be broad or specific is a flexible mechanism to point traffic towards a specific version of your application, either old or new, or send traffic to both at the same time.

Using a label query to select the pods that receive traffic is another Google design choice that comes from their container deployment experience. Maintaining a query to select pods prevents a brittle registration and removal process. Instead, pods matching the query can be constantly updated safely in an infinite loop.

Mentally compare the experience of updating a label query versus obtaining a static list of all application instances, sub-selecting the ones you care about, inspecting them to figure out if they are still valid and finally updating the load balancer with that list.

Replication controllers are used to create the pods used in your deployments. Check out the examples below for each type of deployment:

 [image: Kubernetes Rolling Deployment]

 Rolling Deployment

 Perfect for applications tolerant of running mixed version side by side.

 View Rolling Deployment docs

 [image: Kubernetes Traffic Shift Deployment]

 Traffic Shift Deployment

 Applications that need to shift all traffic at once can use this pattern.

 View Traffic Shift docs

Using Kubernetes services to expose different microservices or tiers of an application to other in your organization will accelerate your workflow and standardize important cluster-level practices: service discovery, load balancing and deployment practices.

 Are you familiar with pods and replication controllers?

 Replication Controller overview
 Pods overview
 Back to Listing

 Custom certificate authorities

Custom certificate authorities

CoreOS Container Linux supports custom Certificate Authorities (CAs) in addition to the default list of trusted CAs. Adding your own CA allows you to:

	Use a corporate wildcard certificate

	Use your own CA to communicate with an installation of CoreUpdate

	Use your own CA to encrypt communications with a container registry

The setup process for any of these use-cases is the same:

	Copy the PEM-encoded certificate authority file (usually with a .pem file name extension) to /etc/ssl/certs

	Run the update-ca-certificates script to update the system bundle of Certificate Authorities. All programs running on the system will now trust the added CA.

More information

Generate Self-Signed Certificates

etcd Security Model [https://github.com/coreos/etcd/blob/master/Documentation/op-guide/security]

Use an insecure registry behind a firewall

etcd Security Model

 Adding disk space to your CoreOS Container Linux machine

Adding disk space to your CoreOS Container Linux machine

On a Container Linux machine, the operating system itself is mounted as a read-only partition at /usr. The root partition provides read-write storage by default and on a fresh install is mostly blank. The default size of this partition depends on the platform but it is usually between 3GB and 16GB. If more space is required simply extend the virtual machine’s disk image and Container Linux will fix the partition table and resize the root partition to fill the disk on the next boot.

Amazon EC2

Amazon doesn’t support directly resizing volumes, you must take a snapshot and create a new volume based on that snapshot. Refer to the AWS EC2 documentation on expanding EBS volumes [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-expand-volume.html] for detailed instructions.

QEMU (qemu-img)

Even if you are not using Qemu itself the qemu-img tool is the easiest to use. It will work on raw, qcow2, vmdk, and most other formats. The command accepts either an absolute size or a relative size by by adding + prefix. Unit suffixes such as G or M are also supported.

Increase the disk size by 5GB
qemu-img resize coreos_production_qemu_image.img +5G

VMware

The interface available for resizing disks in VMware varies depending on the product. See this Knowledge Base article [http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1004047] for details. Most products include a tool called vmware-vdiskmanager. The size must be the absolute disk size, relative sizes are not supported so be careful to only increase the size, not shrink it. The unit suffixes Gb and Mb are supported.

Set the disk size to 20GB
vmware-vdiskmanager -x 20Gb coreos_developer_vmware_insecure.vmx

VirtualBox

Use qemu-img or vmware-vdiskmanager as described above. VirtualBox does not support resizing VMDK disk images, only VDI and VHD disks. Meanwhile VirtualBox only supports using VMDK disk images with the OVF config file format used for importing/exporting virtual machines.

If you have have no other options you can try converting the VMDK disk image to a VDI image and configuring a new virtual machine with it:

VBoxManage clonehd old.vmdk new.vdi --format VDI
VBoxManage modifyhd new.vdi --resize 20480

 Adding swap in CoreOS Container Linux

Adding swap in CoreOS Container Linux

Swap is the process of moving pages of memory to a designated part of the hard disk, freeing up space when needed. Swap can be used to alleviate problems with low-memory environments.

By default Container Linux does not include a partition for swap, however one can configure their system to have swap, either by including a dedicated partition for it or creating a swapfile.

Managing swap with systemd

systemd provides a specialized .swap unit file type which may be used to activate swap. The below example shows how to add a swapfile and activate it using systemd.

Creating a swapfile

The following commands, run as root, will make a 1GiB file suitable for use as swap.

mkdir -p /var/vm
fallocate -l 1024m /var/vm/swapfile1
chmod 600 /var/vm/swapfile1
mkswap /var/vm/swapfile1

Creating the systemd unit file

The following systemd unit activates the swapfile we created. It should be written to /etc/systemd/system/var-vm-swapfile1.swap.

[Unit]
Description=Turn on swap

[Swap]
What=/var/vm/swapfile1

[Install]
WantedBy=multi-user.target

Enable the unit and start using swap

Use systemctl to enable the unit once created. The swappiness value may be modified if desired.

$ systemctl enable --now var-vm-swapfile1.swap
Optionally
$ echo 'vm.swappiness=10' | sudo tee /etc/sysctl.d/80-swappiness.conf
$ systemctl restart systemd-sysctl

Swap has been enabled and will be started automatically on subsequent reboots. We can verify that the swap is activated by running swapon:

$ swapon
NAME TYPE SIZE USED PRIO
/var/vm/swapfile1 file 1024M 0B -1

Problems and Considerations

Btrfs and xfs

Swapfiles should not be created on btrfs or xfs volumes. For systems using btrfs or xfs, it is recommended to create a dedicated swap partition.

Partition size

The swapfile cannot be larger than the partition on which it is stored.

Checking if a system can use a swapfile

Use the df(1) command to verify that a partition has the right format and enough available space:

$ df -Th
Filesystem Type Size Used Avail Use% Mounted on
[...]
/dev/sdXN ext4 2.0G 3.0M 1.8G 1% /var

The block device mounted at /var/, /dev/sdXN, is the correct filesystem type and has enough space for a 1GiB swapfile.

Adding swap with a Container Linux Config

The following config sets up a 1GiB swapfile located at /var/vm/swapfile1.

storage:
 files:
 - path: /etc/sysctl.d/80-swappiness.conf
 filesystem: root
 contents:
 inline: "vm.swappiness=10"

systemd:
 units:
 - name: var-vm-swapfile1.swap
 enabled: true
 contents: |
 [Unit]
 Description=Turn on swap
 Requires=create-swapfile.service
 After=create-swapfile.service

 [Swap]
 What=/var/vm/swapfile1

 [Install]
 WantedBy=multi-user.target
 - name: create-swapfile.service
 contents: |
 [Unit]
 Description=Create a swapfile
 RequiresMountsFor=/var
 ConditionPathExists=!/var/vm/swapfile1

 [Service]
 Type=oneshot
 ExecStart=/usr/bin/mkdir -p /var/vm
 ExecStart=/usr/bin/fallocate -l 1024m /var/vm/swapfile1
 ExecStart=/usr/bin/chmod 600 /var/vm/swapfile1
 ExecStart=/usr/sbin/mkswap /var/vm/swapfile1
 RemainAfterExit=true

 Adding users

Adding users

You can create user accounts on a CoreOS Container Linux machine manually with useradd or via a Container Linux Config when the machine is created.

Add Users via Container Linux Configs

In your Container Linux Config, you can specify many different parameters [https://github.com/coreos/container-linux-config-transpiler/blob/master/doc/configuration] for each user. Here’s an example:

passwd:
 users:
 - name: core
 ssh_authorized_keys:
 - "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDGdByTgSVHq......."
 - name: elroy
 password_hash: "$6$5s2u6/jR$un0AvWnqilcgaNB3Mkxd5yYv6mTlWfOoCYHZmfi3LDKVltj.E8XNKEcwWm..."
 ssh_authorized_keys:
 - "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDGdByTgSVHq......."
 groups: [sudo, docker]

Add user manually

If you’d like to add a user manually, SSH to the machine and use the useradd tool. To create the user user, run:

sudo useradd -p "*" -U -m user1 -G sudo

The "*" creates a user that cannot login with a password but can log in via SSH key. -U creates a group for the user, -G adds the user to the existing sudo group and -m creates a home directory. If you’d like to add a password for the user, run:

$ sudo passwd user1
New password:
Re-enter new password:
passwd: password changed.

To assign an SSH key, run:

update-ssh-keys -u user1 -a user1 user1.pem

Grant sudo Access

If you trust the user, you can grant administrative privileges using visudo. visudo checks the file syntax before actually overwriting the sudoers file. This command should be run as root to avoid losing sudo access in the event of a failure. Instead of editing /etc/sudo.conf directly you will create a new file under the /etc/sudoers.d/ directory. When you run visudo, it is required that you specify which file you are attempting to edit with the -f argument:

visudo -f /etc/sudoers.d/user1

Add a the line:

user1 ALL=(ALL) NOPASSWD: ALL

Check that sudo has been granted:

su user1
$ cat /etc/sudoers.d/user1
cat: /etc/sudoers.d/user1: Permission denied

$ sudo cat /etc/sudoers.d/user1
user1 ALL=(ALL) NOPASSWD: ALL

 Running CoreOS Container Linux on AURO

Running CoreOS Container Linux on AURO

AURO is a Canadian OpenStack cloud computing provider based in Canada. In order to get started, you must have an active account on the AURO public cloud computing [https://www.auro.io/public_cloud_hosting/product] service.

The following instructions will walk you through setting up the nova tool with your appropriate credentials and launching your first cluster using the CLI tools.

Choosing a Channel

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates] with different schedules per channel. You can disable this feature, although we don’t recommend it. Read the release notes [https://coreos.com/releases] for specific features and bug fixes.

The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.

The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.

The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

Container Linux releases are automatically built and deployed on the AURO cloud, therefore it is best to launch your clusters with the following naming pattern: Container Linux Channel Version. For example, the image name of the latest alpha release will be “Container Linux Alpha {{site.alpha-channel}}”.

Cloud-Config

Container Linux allows you to configure machine parameters, launch systemd units on startup and more via cloud-config [https://github.com/coreos/coreos-cloudinit/blob/master/Documentation/cloud-config]. We’re going to provide the cloud-config data via the user-data flag.

You are able to supply the user-data using the AURO control panel when launching an instance, in the “Post Creation” tab, as well as using the CLI to deploy your cluster on the AURO cloud.

A sample common cloud-config file will look something like the following:

#cloud-config

coreos:
 etcd2:
 # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
 # specify the initial size of your cluster with ?size=X
 discovery: https://discovery.etcd.io/<token>
 # multi-region and multi-cloud deployments need to use $public_ipv4
 advertise-client-urls: http://$private_ipv4:2379,http://$private_ipv4:4001
 initial-advertise-peer-urls: http://$private_ipv4:2380
 # listen on both the official ports and the legacy ports
 # legacy ports can be omitted if your application doesn't depend on them
 listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
 listen-peer-urls: http://$private_ipv4:2380
 units:
 - name: etcd2.service
 command: start
 - name: fleet.service
 command: start

The $private_ipv4 and $public_ipv4 substitution variables are fully supported in cloud-config on AURO.

Launch Cluster

You will need to install python-novaclient which supplies the OpenStack CLI tools as well as a keypair to use in order to access your Container Linux cluster.

Install OpenStack CLI tools

If you don’t have pip installed, install it by running sudo easy_install pip. Now let’s use pip to install python-novaclient.

$ sudo pip install python-novaclient

Add API Credentials

You will need to have your API credentials configured on the machine that you’re going to be launching your cluster from. The easiest way to do this is by logging into the AURO control panel and in the “Access & Security” section go to the “API Access” tab and clicking “Download OpenStack RC File”.

From there, you must create a file on your system with the contents of the <project name>-openrc.sh file provided. Once done, you will need to source that file in your shell prior to running any API commands. You can test that everything is running properly by running the following command:

$ source <project name>-openrc.sh
$ nova credentials

Create Keypair

You can import an existing public key by using the nova keypair-add command, however for this guide, we will be creating a new keypair and storing the private key for it locally and use it to access our Container Linux cluster.

$ nova keypair-add coreos-key > coreos.pem

Create Servers

You should now be ready to launch the servers which will create your Container Linux cluster using the nova CLI command.

 	Beta Channel

 	Alpha Channel

 The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

 nova boot --user-data ./cloud-config.yaml --image "CoreOS Alpha {{site.alpha-channel}}" --key-name coreos-key --flavor standard-1 --num-instances 3 --security-groups default coreos

 The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.

 nova boot --user-data ./cloud-config.yaml --image "CoreOS Beta {{site.beta-channel}}" --key-name coreos-key --flavor standard-1 --num-instances 3 --security-groups default coreos

Once that’s done, your cluster should be up and running. You can list the created servers and SSH into a server using your private key.

$ nova list
+--------------------------------------+-----------------+--------+------------+-------------+---------------------------------------+
| ID | Name | Status | Task State | Power State | Networks |
+--------------------------------------+-----------------+--------+------------+-------------+---------------------------------------+
a1df1d98-622f-4f3b-adef-cb32f3e2a94d	coreos-a1df1d98	ACTIVE	None	Running	public=104.36.x.x; private=172.22.x.x
db13c6a7-a474-40ff-906e-2447cbf89440	coreos-db13c6a7	ACTIVE	None	Running	public=104.36.x.x; private=172.22.x.x
f70b739d-9ad8-4b0b-bb74-4d715205ff0b	coreos-f70b739d	ACTIVE	None	Running	public=104.36.x.x; private=172.22.x.x
+--------------------------------------+-----------------+--------+------------+-------------+---------------------------------------+
$ nova ssh --login core -i core.pem coreos-a1df1d98
CoreOS (alpha)
core@a1df1d98-622f-4f3b-adef-cb32f3e2a94d ~ $

Adding More Machines

Adding new instances to the cluster is as easy as launching more with the same cloud-config. New instances will join the cluster assuming they can communicate with the others.

Multiple Clusters

If you would like to create multiple clusters you’ll need to generate and use a new discovery token. Change the token value on the etcd discovery parameter in the cloud-config, and boot new instances.

Using CoreOS Container Linux

Now that you have instances booted, it is time to play around. Check out the Container Linux Quickstart guide or dig into more specific topics [https://coreos.com/docs].

 Running CoreOS Container Linux on Microsoft Azure

Running CoreOS Container Linux on Microsoft Azure

Choosing a channel

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates] with different schedules per channel. This feature can be disabled, although it is not recommended. The release notes [https://coreos.com/releases] contain information about specific features and bug fixes.

The following command will create a single instance. For more details, check out Launching via the Microsoft Azure CLI.

 	Stable Channel

 	Beta Channel

 	Alpha Channel

 The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

 az vm create --name node-1 --resource-group group-1 --admin-username core --custom-data "$(cat config.ign)" --image CoreOS:CoreOS:Alpha:latest

 The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.

 az vm create --name node-1 --resource-group group-1 --admin-username core --custom-data "$(cat config.ign)" --image CoreOS:CoreOS:Beta:latest

 The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.

 az vm create --name node-1 --resource-group group-1 --admin-username core --custom-data "$(cat config.ign)" --image CoreOS:CoreOS:Stable:latest

Container Linux Config

Container Linux allows you to configure machine parameters, configure networking, launch systemd units on startup, and more via a Container Linux Config. Head over to the docs to learn how to use Container Linux Configs. Note that Microsoft Azure doesn’t allow an instance’s userdata to be modified after the instance has been launched. This isn’t a problem since Ignition, the tool that consumes the userdata, only runs on the first boot.

You can provide a raw Ignition config (produced from a Container Linux Config) to Container Linux via the Microsoft Azure CLI.

As an example, this config will configure and start etcd:

etcd:
 # All options get passed as command line flags to etcd.
 # Any information inside curly braces comes from the machine at boot time.

 # multi_region and multi_cloud deployments need to use {PUBLIC_IPV4}
 advertise_client_urls: "http://{PRIVATE_IPV4}:2379"
 initial_advertise_peer_urls: "http://{PRIVATE_IPV4}:2380"
 # listen on both the official ports and the legacy ports
 # legacy ports can be omitted if your application doesn't depend on them
 listen_client_urls: "http://0.0.0.0:2379"
 listen_peer_urls: "http://{PRIVATE_IPV4}:2380"
 # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
 # specify the initial size of your cluster with ?size=X
 discovery: "https://discovery.etcd.io/<token>"

Launching instances

Via the Microsoft Azure CLI

Follow the installation and configuration guides [https://docs.microsoft.com/en-us/cli/azure/overview] for the Microsoft Azure CLI to set up your local installation.

Instances on Microsoft Azure must be created within a resource group. Create a new resource group with the following command:

az group create --name group-1 --location <location>

Now that you have a resource group, create an instance of Container Linux Alpha inside it:

az vm create --name node-1 --resource-group group-1 --admin-username core --custom-data "$(cat config.ign)" --image CoreOS:CoreOS:Alpha:latest

Using CoreOS Container Linux

Now that you have a machine booted it is time to play around. Check out the Container Linux quickstart guide or dig into more specific topics [https://coreos.com/docs].

 Running CoreOS Container Linux on Brightbox Cloud

Running CoreOS Container Linux on Brightbox Cloud

These instructions will walk you through running a Container Linux cluster on Brightbox. This guide uses the Brightbox CLI [http://brightbox.com/docs/guides/cli/getting-started/] but you can also use the Brightbox Manager [http://brightbox.com/docs/guides/manager/].

Firewall policy

First of all, let’s create a server group to put the new servers into:

$ brightbox groups create -n "coreos"

Creating a new server group

 id server_count name

 grp-cdl6h 0 coreos

And then create a firewall policy [http://brightbox.com/docs/guides/cli/firewall/] for the group using its identifier:

$ brightbox firewall-policies create -n "coreos" grp-cdl6h

 id server_group name

 fwp-dw0n6 grp-cdl6h coreos

Firewall rules

Now let’s define the firewall rules for this new policy. First we’ll allow ssh access in from anywhere:

$ brightbox firewall-rules create --source any --protocol tcp --dport 22 fwp-dw0n6

 id protocol source sport destination dport icmp_type description
--
 fwr-i513z tcp any - - 22 -
--

And then we’ll allow the etcd ports 7001 and 4001, allowing access from only the other nodes in the group.

$ brightbox firewall-rules create --source grp-cdl6h --protocol tcp --dport 7001,4001 fwp-dw0n6

 id protocol source sport destination dport icmp_type description

 fwr-xax48 tcp grp-cdl6h - - 7001,4001 -

And then allow all outgoing access from the servers in the group:

$ brightbox firewall-rules create --destination any fwp-dw0n6

 id protocol source sport destination dport icmp_type description
--
 fwr-dtzim - - - any - -
--

List images

You can find it by listing all images and grepping for CoreOS:

$ brightbox images list | grep CoreOS

 id owner type created_on status size name

 {{site.brightbox-id}} brightbox official 2013-12-15 public 5442 CoreOS {{site.brightbox-version}} (x86_64)

Cloud-config

Container Linux allows you to configure machine parameters, launch systemd units on startup and more via cloud-config [https://github.com/coreos/coreos-cloudinit/blob/master/Documentation/cloud-config]. We’re going to provide the cloud-config data via the user-data-file flag.

A sample common cloud-config file will look something like the following:

#cloud-config

coreos:
 etcd2:
 # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
 # specify the initial size of your cluster with ?size=X
 discovery: https://discovery.etcd.io/<token>
 # multi-region and multi-cloud deployments need to use $public_ipv4
 advertise-client-urls: http://$private_ipv4:2379,http://$private_ipv4:4001
 initial-advertise-peer-urls: http://$private_ipv4:2380
 # listen on both the official ports and the legacy ports
 # legacy ports can be omitted if your application doesn't depend on them
 listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
 listen-peer-urls: http://$private_ipv4:2380
 units:
 - name: etcd2.service
 command: start
 - name: fleet.service
 command: start

The $private_ipv4 and $public_ipv4 substitution variables are fully supported in cloud-config on Brightbox.

Building servers

Now build three servers using the image, in the server group we created and specifying the cloud-config as the user data:

$ brightbox servers create -i 3 --type small --name "coreos" --user-data-file ./user-data --server-groups grp-cdl6h {{site.brightbox-id}}

Creating 3 small (typ-8fych) servers with image CoreOS {{site.brightbox-version}} ({{ site.brightbox-id }}) in groups grp-cdl6h with 0.05k of user data

 id status type zone created_on image_id cloud_ip_ids name
--
 srv-ko2sk creating small gb1-a 2013-10-18 {{ site.brightbox-id }} coreos
 srv-vynng creating small gb1-a 2013-10-18 {{ site.brightbox-id }} coreos
 srv-7tf5d creating small gb1-a 2013-10-18 {{ site.brightbox-id }} coreos
--

Accessing the cluster

Those servers should take just a minute to build and boot. They automatically install your Brightbox Cloud ssh key on bootup, so you can ssh in straight away as the core user.

If you’ve got ipv6 locally, you can ssh in directly:

$ ssh core@ipv6.srv-n8uak.gb1.brightbox.com
The authenticity of host 'ipv6.srv-n8uak.gb1.brightbox.com (2a02:1348:17c:423d:24:19ff:fef1:8f6)' can't be established.
RSA key fingerprint is 99:a5:13:60:07:5d:ac:eb:4b:f2:cb:c9:b2:ab:d7:21.
Are you sure you want to continue connecting (yes/no)? yes

Last login: Thu Oct 17 11:42:04 UTC 2013 from srv-4mhaz.gb1.brightbox.com on pts/0
 ______ ____ _____
 / ____/___ ________ / __ \/ ___/
 / / / __ \/ ___/ _ \/ / / /__ \
/ /___/ /_/ / / / __/ /_/ /___/ /
____/____/_/ ___/____//____/
core@srv-n8uak ~ $

If you don’t have ipv6, you’ll need to create and map a Cloud IP [http://brightbox.com/docs/guides/cli/cloud-ips/] first.

Using CoreOS Container Linux

Now that you have a cluster bootstrapped it is time to play around. Check out the Container Linux Quickstart guide or dig into more specific topics [https://coreos.com/docs].

 Running CoreOS Container Linux on cloud.ca

Running CoreOS Container Linux on cloud.ca

cloud.ca [http://www.cloud.ca] is a regional IaaS designed to help meet regulatory or security requirements by storing data in Canada. Container Linux is a supported operating system for VMs on the cloud.ca infrastructure.

Choosing a channel

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates], with three channels of different update schedules: Stable, Beta, and Alpha. You can disable this feature, although we don’t recommend it. Read the release notes [https://coreos.com/releases] for specific features and bug fixes.

The cloud.ca Container Linux image is built from the official stable release CloudStack image.

 	Stable Channel

 	Beta Channel

 	Alpha Channel

 The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}. To use the Alpha channel on cloud.ca, select the "CoreOS Stable" template and update the cloud-config to [change the channel to alpha][switching-channels]:

#cloud-config
coreos:
 update:
 group: alpha

</div>
<div class="tab-pane" id="beta">
 <div class="channel-info">
 <p>The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}. To use the Beta channel on cloud.ca, use the "CoreOS Stable" template and update the cloud-config to [change the channel to beta][switching-channels]: </p>
 </div>

#cloud-config
coreos:
 update:
 group: beta

</div>
<div class="tab-pane active" id="stable">
 <div class="channel-info">
 <p>The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.</p>
 </div>
 <table>
 <thead>
 <tr>
 <th>Region</th>
 <th>Template Name</th>
 <th>Template ID</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Compute - East</td>
 <td>CoreOS Stable</td>
 <td>f3d810d8-4e08-4ffb-afe3-6a71e3ce9062</td>
 </tr>
 </tbody>
 </table>
</div>

Cloud-config

Container Linux allows you to configure machine parameters, launch systemd units on startup, and more via cloud-config. Jump over to the docs to learn about the supported features [https://github.com/coreos/coreos-cloudinit/blob/master/Documentation/cloud-config]. Cloud-config is intended to bring up a cluster of machines into a minimal useful state and ideally shouldn’t be used to configure anything that isn’t standard across many hosts. Once the machine is created, cloud-config cannot be modified.

You can provide cloud-config data using cloud.ca management portal or through the CloudStack API. When using CloudStack API, the cloud-conf must be base64 encoded as the userdata parameter.

The current cloud-config example uses a data disk as the docker datastore (/var/lib/docker).

#cloud-config
coreos:
 etcd2:
 # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
 # specify the initial size of your cluster with ?size=X
 discovery: https://discovery.etcd.io/<token>
 # multi-region and multi-cloud deployments need to use $public_ipv4
 advertise-client-urls: http://$private_ipv4:2379,http://$private_ipv4:4001
 initial-advertise-peer-urls: http://$private_ipv4:2380
 # listen on both the official ports and the legacy ports
 # legacy ports can be omitted if your application doesn't depend on them
 listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
 listen-peer-urls: http://$private_ipv4:2380
 units:
 - name: etcd2.service
 command: start
 - name: fleet.service
 command: start
 - name: format-ephemeral.service
 command: start
 content: |
 [Unit]
 Description=Formats the ephemeral drive
 [Service]
 Type=oneshot
 RemainAfterExit=yes
 ExecStart=/usr/sbin/wipefs -f /dev/xvdb
 ExecStart=/usr/sbin/mkfs.btrfs -f /dev/xvdb
 - name: var-lib-docker.mount
 command: start
 content: |
 [Unit]
 Description=Mount ephemeral to /var/lib/docker
 Requires=format-ephemeral.service
 After=format-ephemeral.service
 Before=docker.service
 [Mount]
 What=/dev/xvdb
 Where=/var/lib/docker
 Type=btrfs

The $public_ipv4 substitution variable is not supported in cloud-config on cloud.ca. To use a multi-region cluster, the cluster configuration and the port-forwarding must be done manually.

Adding more machines

To add more instances to the cluster, just launch more with the same cloud-config in the same VPC. New instances will join the etcd2 cluster automatically.

Launching instances

Before deploying Container Linux on cloud.ca, you need the following:

	An account on https://your_organization_name.cloud.ca.

	Access to an Environment with a running VPC. VPC and subnet creation are not
part of the current documentation, refer to cloud.ca online help.

	Your public SSH-key added into your cloud.ca environment.

Using cloud.ca admin portal

	Once logged into your organization; go into Services, select your environment,
then click “Add instance”:

 Environment instances inventory

2. Define the instance name, offering type and select the template "CoreOS Stable":

 New instance details

3. Create a data volume. This volume will be mounted in `/var/lib/docker`, as defined in the cloud-config excerpt. This step is optional:

 New instance data volumes

4. Enable port forwarding rule for SSH (Optional) and assign your SSH key to the new instance:

 New instance connectivity

5. Copy your cloud-config content into the User data section (optional):

 New instance user data

6. Once the instance is created and running, you can SSH into the instance as username **core**, using instance private IP if remote access to your VPC is configured such as remote management VPN. If you enbled port forwarding for SSH on step #4, you can find the assigned public IP in the instance details section:

 Instance details

$ ssh -i ~/.ssh/user1_rsa core@74.X.X.X
CoreOS stable (766.4.0)
core@coreos-node01 ~ $ df -h
Filesystem Size Used Avail Use% Mounted on
devtmpfs 483M 0 483M 0% /dev
tmpfs 496M 0 496M 0% /dev/shm
tmpfs 496M 292K 496M 1% /run
tmpfs 496M 0 496M 0% /sys/fs/cgroup
/dev/xvda9 2.0G 19M 1.9G 1% /
/dev/xvda3 985M 390M 545M 42% /usr
/dev/xvda1 128M 32M 97M 25% /boot
tmpfs 496M 0 496M 0% /tmp
tmpfs 496M 0 496M 0% /media
/dev/xvda6 108M 80K 99M 1% /usr/share/oem
/dev/xvdb 40G 17M 38G 1% /var/lib/docker
core@coreos-node01 ~ $ etcdctl member list
7cb50ab9db389524: name=6a02cad1a70840d8a6ac2c5d3bf80aea peerURLs=http://10.151.68.222:2380 clientURLs=http://10.151.68.222:2379,http://10.151.68.222:4001

Using CoreOS Container Linux

Now that you have a machine booted it is time to play around. Check out the Container Linux Quickstart guide or dig into more specific topics [https://coreos.com/docs].

 Running CoreOS Container Linux on CloudStack

Running CoreOS Container Linux on CloudStack

This guide explains how to deploy Container Linux with CloudStack. These instructions will walk you through downloading Container Linux image and running an instance from it. This document assumes that CloudStack is already installed. Please refer to the Install Guide [http://docs.cloudstack.apache.org/projects/cloudstack-installation/en/latest/] for CloudStack installation steps.

Register the CoreOS Container Linux image (template)

After logging in to CloudStack UI, to upload a template:

	In the left navigation bar, click Templates.

	Click Register Template.

	Provide the following:

	Name and Description: These will be shown in the UI, so choose something descriptive.

	URL: The Management Server will download the file from the specified URL, such as http://dl.openvm.eu/cloudstack/coreos/x86_64/coreos_production_cloudstack_image-kvm.qcow2.bz2.

	Zone: Choose the zone where you want the template to be available, or All Zones to make it available throughout CloudStack.

	OS Type: This helps CloudStack and the hypervisor perform certain operations and make assumptions that improve the performance of the guest.

	Hypervisor: The supported hypervisors are listed. Select the desired one.

	Format: The format of the template upload file, such as VHD or OVA.

	Extractable: Choose Yes if the template is available for extraction. If this option is selected, end users can download a full image of a template.

	Public: Choose Yes to make this template accessible to all users of this CloudStack installation. The template will appear in the Community Templates list. See Container Linux Templates.

	Featured: Choose Yes if you would like this template to be more prominent for users to select. The template will appear in the Featured Templates list. Only an administrator can make a template Featured.

Alternatively, the registerTemplate API [http://cloudstack.apache.org/docs/api/apidocs-4.4/user/registerTemplate.html] can also be used.

CoreOS Container Linux templates

Apache CloudStack community created Container Linux templates [http://dl.openvm.eu/cloudstack/coreos/x86_64/] are currently available for XenServer, KVM, VMware and HyperV hypervisors.

Deploy CoreOS Container Linux instance

To create a VM from a template:

	Log in to the CloudStack UI as an administrator or user.

	In the left navigation bar, click Instances.

	Click Add Instance.

	Select a zone.

	Select the Container Linux template registered in the previous step.

	Click Submit and your VM will be created and started.

Alternatively, the deployVirtualMachine API [http://cloudstack.apache.org/docs/api/apidocs-4.4/user/deployVirtualMachine.html] can also be used to deploy Container Linux instances.

Virtual machine configuration

cloud-config can be provided using userdata while deploying virtual machine. userdata is an optional request parameter for the deployVirtualMachine API [http://cloudstack.apache.org/docs/api/apidocs-4.4/user/deployVirtualMachine.html].

Using CoreOS Container Linux

Now that you have a machine booted it is time to play around.
Check out the Container Linux Quickstart guide or dig into more specific topics [https://coreos.com/docs].

 Running CoreOS Container Linux on DigitalOcean

Running CoreOS Container Linux on DigitalOcean

Choosing a channel

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates] with different schedules per channel. You can disable this feature, although we don’t recommend it. Read the release notes [https://coreos.com/releases] for specific features and bug fixes.

The following command will create a single droplet. For more details, check out Launching via the API.

 	Stable Channel

 	Beta Channel

 	Alpha Channel

 The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

 Launch Container Linux Droplet

 Launch via DigitalOcean API by specifying $REGION, $SIZE and $SSH_KEY_ID:

 curl --request POST "https://api.digitalocean.com/v2/droplets" \
 --header "Content-Type: application/json" \
 --header "Authorization: Bearer $TOKEN" \
 --data '{"region":"'"${REGION}"'",
 "image":"coreos-alpha",
 "size":"'"$SIZE"'",
 "user_data": "'"$(cat ~/config.ign)"'",
 "ssh_keys":["'"$SSH_KEY_ID"'"],
 "name":"core-1"}'

 The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.

 Launch Container Linux Droplet

 Launch via DigitalOcean API by specifying $REGION, $SIZE and $SSH_KEY_ID:

 curl --request POST "https://api.digitalocean.com/v2/droplets" \
 --header "Content-Type: application/json" \
 --header "Authorization: Bearer $TOKEN" \
 --data '{"region":"'"${REGION}"'",
 "image":"coreos-beta",
 "size":"'"$SIZE"'",
 "user_data": "'"$(cat ~/config.ign)"'",
 "ssh_keys":["'"$SSH_KEY_ID"'"],
 "name":"core-1"}'

 The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.

 Launch Container Linux Droplet

 Launch via DigitalOcean API by specifying $REGION, $SIZE and $SSH_KEY_ID:

 curl --request POST "https://api.digitalocean.com/v2/droplets" \
 --header "Content-Type: application/json" \
 --header "Authorization: Bearer $TOKEN" \
 --data '{"region":"'"${REGION}"'",
 "image":"coreos-stable",
 "size":"'"$SIZE"'",
 "user_data": "'"$(cat ~/config.ign)"'",
 "ssh_keys":["'"$SSH_KEY_ID"'"],
 "name":"core-1"}'

Container Linux Configs

Container Linux allows you to configure machine parameters, configure networking, launch systemd units on startup, and more via Container Linux Configs. These configs are then transpiled into Ignition configs and given to booting machines. Head over to the docs to learn about the supported features. Note that DigitalOcean doesn’t allow an instance’s userdata to be modified after the instance has been launched. This isn’t a problem since Ignition only runs on the first boot.

You can provide a raw Ignition config to Container Linux via the DigitalOcean web console or via the DigitalOcean API.

As an example, this config will configure and start etcd:

etcd:
 # All options get passed as command line flags to etcd.
 # Any information inside curly braces comes from the machine at boot time.

 # multi_region and multi_cloud deployments need to use {PUBLIC_IPV4}
 advertise_client_urls: "http://{PRIVATE_IPV4}:2379"
 initial_advertise_peer_urls: "http://{PRIVATE_IPV4}:2380"
 # listen on both the official ports and the legacy ports
 # legacy ports can be omitted if your application doesn't depend on them
 listen_client_urls: "http://0.0.0.0:2379"
 listen_peer_urls: "http://{PRIVATE_IPV4}:2380"
 # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
 # specify the initial size of your cluster with ?size=X
 discovery: "https://discovery.etcd.io/<token>"

Adding more machines

To add more instances to the cluster, just launch more with the same Container Linux Config. New instances will join the cluster regardless of region.

SSH to your droplets

Container Linux is set up to be a little more secure than other DigitalOcean images. By default, it uses the core user instead of root and doesn’t use a password for authentication. You’ll need to add an SSH key(s) via the web console or add keys/passwords via your Ignition config in order to log in.

To connect to a droplet after it’s created, run:

ssh core@<ip address>

Launching droplets

Via the API

For starters, generate a Personal Access Token [https://cloud.digitalocean.com/account/api/tokens] and save it in an environment variable:

read TOKEN
Enter your Personal Access Token

Upload your SSH key via DigitalOcean’s API [https://developers.digitalocean.com/documentation/v2/#ssh-keys] or the web console. Retrieve the SSH key ID via the “list all keys” [https://developers.digitalocean.com/documentation/v2/#list-all-keys] method:

curl --request GET "https://api.digitalocean.com/v2/account/keys" \
 --header "Authorization: Bearer $TOKEN"

Save the key ID from the previous command in an environment variable:

read SSH_KEY_ID
Enter your SSH key ID

Create a 512MB droplet with private networking in NYC3 from the Container Linux Stable image:

curl --request POST "https://api.digitalocean.com/v2/droplets" \
 --header "Content-Type: application/json" \
 --header "Authorization: Bearer $TOKEN" \
 --data '{
 "region":"nyc3",
 "image":"coreos-stable",
 "size":"512mb",
 "name":"core-1",
 "private_networking":true,
 "ssh_keys":['$SSH_KEY_ID'],
 "user_data": "'"$(cat config.ign | sed 's/"/\\"/g')"'"
}'

For more details, check out DigitalOcean’s API documentation [https://developers.digitalocean.com/documentation/v2/].

Via the web console

	Open the “new droplet” [https://cloud.digitalocean.com/droplets/new?image=coreos-stable] page in the web console.

	Give the machine a hostname, select the size, and choose a region.

 Choosing a size and hostname

3. Enable User Data and add your Ignition config in the text box.

 Droplet settings for networking and Ignition

4. Choose your [preferred channel](#choosing-a-channel) of Container Linux.

 Choosing a Container Linux channel

5. Select your SSH keys.Note that DigitalOcean is not able to inject a root password into Container Linux images like it does with other images. You’ll need to add your keys via the web console or add keys or passwords via your Container Linux Config in order to log in.

Using CoreOS Container Linux

Now that you have a machine booted it is time to play around. Check out the Container Linux Quickstart guide or dig into more specific topics [https://coreos.com/docs].

 Running CoreOS Container Linux on EC2

Running CoreOS Container Linux on EC2

The current AMIs for all Container Linux channels and EC2 regions are listed below and updated frequently. Questions can be directed to the CoreOS IRC channel or user mailing list [https://groups.google.com/forum/#%21forum/coreos-user].

Choosing a channel

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates] with different schedules per channel. You can disable this feature, although we don’t recommend it. Read the release notes [https://coreos.com/releases] for specific features and bug fixes.

 	Stable Channel

 	Beta Channel

 	Alpha Channel

 The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

 View as json feed

 	EC2 Region
 	AMI Type
 	AMI ID

 {% for region in site.data.alpha-channel.amis %}
 {% capture region_domain %}{% if region.name == 'us-gov-west-1' %}amazonaws-us-gov.com{% elsif region.name == 'cn-north-1' or region.name == 'cn-northwest-1' %}amazonaws.cn{% else %}aws.amazon.com{% endif %}{% endcapture %}
 {% if region.pv %}

 	{{ region.name }}
 	PV
 	{{ region.pv }}

 {% endif %}

 {% unless region.pv %}
 	{{ region.name }}
 	HVM
 {% else %}
 	HVM
 {% endunless %}
 	{{ region.hvm }}

 {% endfor %}

 The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.

 View as json feed

 	EC2 Region
 	AMI Type
 	AMI ID

 {% for region in site.data.beta-channel.amis %}
 {% capture region_domain %}{% if region.name == 'us-gov-west-1' %}amazonaws-us-gov.com{% elsif region.name == 'cn-north-1' or region.name == 'cn-northwest-1' %}amazonaws.cn{% else %}aws.amazon.com{% endif %}{% endcapture %}
 {% if region.pv %}

 	{{ region.name }}
 	PV
 	{{ region.pv }}

 {% endif %}

 {% unless region.pv %}
 	{{ region.name }}
 	HVM
 {% else %}
 	HVM
 {% endunless %}
 	{{ region.hvm }}

 {% endfor %}

 The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.

 View as json feed

 	EC2 Region
 	AMI Type
 	AMI ID

 {% for region in site.data.stable-channel.amis %}
 {% capture region_domain %}{% if region.name == 'us-gov-west-1' %}amazonaws-us-gov.com{% elsif region.name == 'cn-north-1' or region.name == 'cn-northwest-1' %}amazonaws.cn{% else %}aws.amazon.com{% endif %}{% endcapture %}
 {% if region.pv %}

 	{{ region.name }}
 	PV
 	{{ region.pv }}

 {% endif %}

 {% unless region.pv %}
 	{{ region.name }}
 	HVM
 {% else %}
 	HVM
 {% endunless %}
 	{{ region.hvm }}

 {% endfor %}

Container Linux Configs

Container Linux allows you to configure machine parameters, configure networking, launch systemd units on startup, and more via Container Linux Configs. These configs are then transpiled into Ignition configs and given to booting machines. Head over to the docs to learn about the supported features.

You can provide a raw Ignition config to Container Linux via the Amazon web console or via the EC2 API [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html].

As an example, this Container Linux Config will configure and start etcd:

etcd:
 # All options get passed as command line flags to etcd.
 # Any information inside curly braces comes from the machine at boot time.

 # multi_region and multi_cloud deployments need to use {PUBLIC_IPV4}
 advertise_client_urls: "http://{PRIVATE_IPV4}:2379"
 initial_advertise_peer_urls: "http://{PRIVATE_IPV4}:2380"
 # listen on both the official ports and the legacy ports
 # legacy ports can be omitted if your application doesn't depend on them
 listen_client_urls: "http://0.0.0.0:2379"
 listen_peer_urls: "http://{PRIVATE_IPV4}:2380"
 # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
 # specify the initial size of your cluster with ?size=X
 discovery: "https://discovery.etcd.io/<token>"

Instance storage

Ephemeral disks and additional EBS volumes attached to instances can be mounted with a .mount unit. Amazon’s block storage devices are attached differently depending on the instance type [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#InstanceStoreDeviceNames]. Here’s the Container Linux Config to format and mount the first ephemeral disk, xvdb, on most instance types:

storage:
 filesystems:
 - mount:
 device: /dev/xvdb
 format: ext4
 wipe_filesystem: true

systemd:
 units:
 - name: media-ephemeral.mount
 enable: true
 contents: |
 [Mount]
 What=/dev/xvdb
 Where=/media/ephemeral
 Type=ext4

 [Install]
 RequiredBy=local-fs.target

For more information about mounting storage, Amazon’s own documentation [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html] is the best source. You can also read about mounting storage on Container Linux.

Adding more machines

To add more instances to the cluster, just launch more with the same Container Linux Config, the appropriate security group and the AMI for that region. New instances will join the cluster regardless of region if the security groups are configured correctly.

SSH to your instances

Container Linux is set up to be a little more secure than other cloud images. By default, it uses the core user instead of root and doesn’t use a password for authentication. You’ll need to add an SSH key(s) via the AWS console or add keys/passwords via your Container Linux Config in order to log in.

To connect to an instance after it’s created, run:

ssh core@<ip address>

Multiple clusters

If you would like to create multiple clusters you will need to change the “Stack Name”. You can find the direct template file on S3 [https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-hvm.template].

Manual setup

{% for region in site.data.alpha-channel.amis %}
{% if region.name == ‘us-east-1’ %}
TL;DR: launch three instances of {{region.hvm}} [https://console.aws.amazon.com/ec2/home?region=%7B%7Bregion.name%7D%7D#launchAmi=%7B%7Bregion.hvm%7D%7D] in {{region.name}} with a security group that has open port 22, 2379, 2380, 4001, and 7001 and the same “User Data” of each host. SSH uses the core user and you have etcd [https://github.com/coreos/etcd/tree/master/Documentation] and Docker [https://docs.docker.io] to play with.
{% endif %}
{% endfor %}

Creating the security group

You need open port 2379, 2380, 7001 and 4001 between servers in the etcd cluster. Step by step instructions below.

This step is only needed once

First we need to create a security group to allow Container Linux instances to communicate with one another.

	Go to the security group [https://console.aws.amazon.com/ec2/home?region=us-east-1#s=SecurityGroups] page in the EC2 console.

	Click “Create Security Group”

	Name: coreos-testing

	Description: Container Linux instances

	VPC: No VPC

	Click: “Yes, Create”

	In the details of the security group, click the Inbound tab

	First, create a security group rule for SSH

	Create a new rule: SSH

	Source: 0.0.0.0/0

	Click: “Add Rule”

	Add two security group rules for etcd communication

	Create a new rule: Custom TCP rule

	Port range: 2379

	Source: type “coreos-testing” until your security group auto-completes. Should be something like “sg-8d4feabc”

	Click: “Add Rule”

	Repeat this process for port range 2380, 4001 and 7001 as well

	Click “Apply Rule Changes”

Launching a test cluster

 	Stable Channel

 	Beta Channel

 	Alpha Channel

 We will be launching three instances, with a few parameters in the User Data, and selecting our security group.

 	
 {% for region in site.data.alpha-channel.amis %}
 {% if region.name == 'us-east-1' %}
 Open the quick launch wizard to boot {{region.hvm}}.
 {% endif %}
 {% endfor %}

 	
 On the second page of the wizard, launch 3 servers to test our clustering

 	Number of instances: 3

 	Click "Continue"

 	
 Next, we need to specify a discovery URL, which contains a unique token that allows us to find other hosts in our cluster. If you're launching your first machine, generate one at https://discovery.etcd.io/new?size=3, configure the `?size=` to your initial cluster size and add it to the metadata. You should re-use this key for each machine in the cluster.

 	
 Use ct to convert the following configuration into an Ignition config, and back in the EC2 dashboard, paste it into the "User Data" field.
```yaml container-linux-config:ec2
etcd:
  # All options get passed as command line flags to etcd.
  # Any information inside curly braces comes from the machine at boot time.
  
    
    Running CoreOS Container Linux with AWS EC2 Container Service
    

    
 
  

    
      
          
            
  
Running CoreOS Container Linux with AWS EC2 Container Service

Amazon EC2 Container Service (ECS) [http://aws.amazon.com/ecs/] is a container management service which provides a set of APIs for scheduling container workloads across EC2 clusters. It supports Container Linux with Docker containers.

Your Container Linux machines communicate with ECS via an agent. The agent interacts with Docker to start new containers and gather information about running containers.


Set up a new cluster

When booting your Container Linux Machines on EC2, configure the ECS agent to be started via Ignition [https://coreos.com/ignition/docs/latest].

Be sure to change ECS_CLUSTER to the cluster name you’ve configured via the ECS CLI or leave it empty for the default. Here’s a full config example:

storage:
  files:
    - path: /var/lib/iptables/rules-save
      filesystem: root
      mode: 0644
      contents:
        inline: |
          *nat
          -A PREROUTING -d 169.254.170.2/32 -p tcp -m tcp --dport 80 -j DNAT --to-destination 127.0.0.1:51679
          -A OUTPUT -d 169.254.170.2/32 -p tcp -m tcp --dport 80 -j REDIRECT --to-ports 51679
          COMMIT
    - path: /etc/sysctl.d/localnet.conf
      filesystem: root
      mode: 0644
      contents:
        inline: |
          net.ipv4.conf.all.route_localnet=1

systemd:
 units:
   - name: iptables-restore.service
     enable: true
   - name: systemd-sysctl.service
     enable: true
   - name: amazon-ecs-agent.service
     enable: true
     contents: |
       [Unit]
       Description=AWS ECS Agent
       Documentation=https://docs.aws.amazon.com/AmazonECS/latest/developerguide/
       Requires=docker.socket
       After=docker.socket

       [Service]
       Environment=ECS_CLUSTER=your_cluster_name
       Environment=ECS_LOGLEVEL=info
       Environment=ECS_VERSION=latest
       Restart=on-failure
       RestartSec=30
       RestartPreventExitStatus=5
       SyslogIdentifier=ecs-agent
       ExecStartPre=-/bin/mkdir -p /var/log/ecs /var/ecs-data /etc/ecs
       ExecStartPre=-/usr/bin/touch /etc/ecs/ecs.config
       ExecStartPre=-/usr/bin/docker kill ecs-agent
       ExecStartPre=-/usr/bin/docker rm ecs-agent
       ExecStartPre=/usr/bin/docker pull amazon/amazon-ecs-agent:${ECS_VERSION}
       ExecStart=/usr/bin/docker run \
           --name ecs-agent \
           --env-file=/etc/ecs/ecs.config \
           --volume=/var/run/docker.sock:/var/run/docker.sock \
           --volume=/var/log/ecs:/log \
           --volume=/var/ecs-data:/data \
           --volume=/sys/fs/cgroup:/sys/fs/cgroup:ro \
           --volume=/run/docker/execdriver/native:/var/lib/docker/execdriver/native:ro \
           --publish=127.0.0.1:51678:51678 \
           --publish=127.0.0.1:51679:51679 \
           --env=ECS_AVAILABLE_LOGGING_DRIVERS='["awslogs","json-file","journald","logentries","splunk","syslog"]'
           --env=ECS_ENABLE_TASK_IAM_ROLE=true \
           --env=ECS_ENABLE_TASK_IAM_ROLE_NETWORK_HOST=true \
           --env=ECS_LOGFILE=/log/ecs-agent.log \
           --env=ECS_LOGLEVEL=${ECS_LOGLEVEL} \
           --env=ECS_DATADIR=/data \
           --env=ECS_CLUSTER=${ECS_CLUSTER} \
           amazon/amazon-ecs-agent:${ECS_VERSION}

       [Install]
       WantedBy=multi-user.target





The example above pulls the latest official Amazon ECS agent container from the Docker Hub when the machine starts. If you ever need to update the agent, it’s as simple as restarting the amazon-ecs-agent service or the Container Linux machine.

If you want to configure SSH keys in order to log in, mount disks or configure other options, see the Container Linux Configs documentation.

For more information on using ECS, check out the official Amazon documentation [http://aws.amazon.com/documentation/ecs/].







          

      

      

    

  

  
    
    Running CoreOS Container Linux on Eucalyptus 3.4
    

    
 
  

    
      
          
            
  
Running CoreOS Container Linux on Eucalyptus 3.4

These instructions will walk you through downloading Container Linux, bundling the image, and running an instance from it.


Import the image

These steps will download the Container Linux image, uncompress it, convert it from qcow to raw, and then import it into Eucalyptus. In order to convert the image you will need to install qemu-img with your favorite package manager.


Choosing a channel

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates] with different schedules per channel. You can disable this feature, although we don’t recommend it. Read the release notes [https://coreos.com/releases] for specific features and bug fixes.


  
    	Stable Channel

    	Beta Channel

    	Alpha Channel

  

  
    
      The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

      
$ wget -q https://alpha.release.core-os.net/amd64-usr/current/coreos_production_openstack_image.img.bz2
$ bunzip2 coreos_production_openstack_image.img.bz2
$ qemu-img convert -O raw coreos_production_openstack_image.img coreos_production_openstack_image.raw
$ euca-bundle-image -i coreos_production_openstack_image.raw -r x86_64 -d /var/tmp
00% |====================================================================================================|   5.33 GB  59.60 MB/s Time: 0:01:35
Wrote manifest bundle/coreos_production_openstack_image.raw.manifest.xml
$ euca-upload-bundle -m /var/tmp/coreos_production_openstack_image.raw.manifest.xml -b coreos-production
Uploaded coreos-production/coreos_production_openstack_image.raw.manifest.xml
$ euca-register coreos-production/coreos_production_openstack_image.raw.manifest.xml --virtualization-type hvm --name "Container Linux-Production"
emi-E4A33D45
      

    

    
      The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.

      
$ wget -q https://beta.release.core-os.net/amd64-usr/current/coreos_production_openstack_image.img.bz2
$ bunzip2 coreos_production_openstack_image.img.bz2
$ qemu-img convert -O raw coreos_production_openstack_image.img coreos_production_openstack_image.raw
$ euca-bundle-image -i coreos_production_openstack_image.raw -r x86_64 -d /var/tmp
00% |====================================================================================================|   5.33 GB  59.60 MB/s Time: 0:01:35
Wrote manifest bundle/coreos_production_openstack_image.raw.manifest.xml
$ euca-upload-bundle -m /var/tmp/coreos_production_openstack_image.raw.manifest.xml -b coreos-production
Uploaded coreos-production/coreos_production_openstack_image.raw.manifest.xml
$ euca-register coreos-production/coreos_production_openstack_image.raw.manifest.xml --virtualization-type hvm --name "Container Linux-Production"
emi-E4A33D45
      

    

    
      The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.

      
$ wget -q https://stable.release.core-os.net/amd64-usr/current/coreos_production_openstack_image.img.bz2
$ bunzip2 coreos_production_openstack_image.img.bz2
$ qemu-img convert -O raw coreos_production_openstack_image.img coreos_production_openstack_image.raw
$ euca-bundle-image -i coreos_production_openstack_image.raw -r x86_64 -d /var/tmp
00% |====================================================================================================|   5.33 GB  59.60 MB/s Time: 0:01:35
Wrote manifest bundle/coreos_production_openstack_image.raw.manifest.xml
$ euca-upload-bundle -m /var/tmp/coreos_production_openstack_image.raw.manifest.xml -b coreos-production
Uploaded coreos-production/coreos_production_openstack_image.raw.manifest.xml
$ euca-register coreos-production/coreos_production_openstack_image.raw.manifest.xml --virtualization-type hvm --name "Container Linux-Production"
emi-E4A33D45
      

    

  







Boot it up

Now generate the ssh key that will be injected into the image for the core user and boot it up!

$ euca-create-keypair coreos > core.pem
$ euca-run-instances emi-E4A33D45 -k coreos -t m1.medium -g default
...





Your first Container Linux instance should now be running. The only thing left to do is find the IP and SSH in.

$ euca-describe-instances | grep coreos
RESERVATION     r-BCF44206      498025213678    group-1380012085
INSTANCE        i-22444094      emi-E4A33D45    euca-10-0-1-61.cloud.home       euca-172-16-0-56.cloud.internal running coreos  0
                m1.small        2013-10-02T05:32:44.096Z        one     eki-05573B4A    eri-EA7436D2            monitoring-enabled      10.0.1.61    172.16.0.56                     instance-store                                  paravirtualized         5046c208-fec1-4a6e-b079-e7cdf6a7db8f_one_1





Finally SSH into it, note that the user is core:

$ chmod 400 core.pem
$ ssh -i core.pem core@10.0.1.61
   ______                ____  _____
  / ____/___  ________  / __ \/ ___/
 / /   / __ \/ ___/ _ \/ / / /\__ \
/ /___/ /_/ / /  /  __/ /_/ /___/ /
\____/\____/_/   \___/\____//____/

core@10-0-0-3 ~ $








Using CoreOS Container Linux

Now that you have a machine booted it is time to play around. Check out the Container Linux Quickstart guide or dig into more specific topics [https://coreos.com/docs].







          

      

      

    

  

  
    
    Running CoreOS Container Linux on Exoscale
    

    
 
  

    
      
          
            
  
Running CoreOS Container Linux on Exoscale


Choosing a channel

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates] with different schedules per channel. You can disable this feature, although we don’t recommend it. Read the release notes [https://coreos.com/releases] for specific features and bug fixes.

The Exoscale Container Linux image is built officially and each instance deployment is a unique fresh instance. By default, only the stable channel is deployed on Exoscale, you can easily switch to Beta or Alpha channel.




Security groups

Unlike other providers, all Exoscale instances are protected by default on inbound traffic. In order to be able to work in a Container Linux cluster you should add the following rules in either your default security group or a security group of your choice and tag all Container Linux instances with it:


	SSH: TCP port 22


	etcd: TCP ports 2379 for client communication and 2380 for server-to-server communication


	etcd (Deprecated): TCP ports 4001 for client communication and 7001 for server-to-server communication







Cloud-config

Container Linux allows you to configure machine parameters, launch systemd units on startup, and more via cloud-config. Jump over to the docs to learn about the supported features [https://github.com/coreos/coreos-cloudinit/blob/master/Documentation/cloud-config]. Cloud-config is intended to bring up a cluster of machines into a minimal useful state and ideally shouldn’t be used to configure anything that isn’t standard across many hosts. Once the machine is created, cloud-config cannot be modified.

You can provide raw cloud-config data to Container Linux via the Exoscale portal or via the Exoscale compute API.

In order to leverage Container Linux unique automation attributes, a standard CoreOS cloud-config on Exoscale could be configured with:

#cloud-config

coreos:
  etcd2:
    # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
    # specify the initial size of your cluster with ?size=X
    discovery: https://discovery.etcd.io/<token>
    advertise-client-urls: http://$public_ipv4:2379,http://$private_ipv4:4001
    initial-advertise-peer-urls: http://$public_ipv4:2380
    # listen on both the official ports and the legacy ports
    # legacy ports can be omitted if your application doesn't depend on them
    listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
    listen-peer-urls: http://$public_ipv4:2380

  units:
    - name: etcd2.service
      command: start
    - name: fleet.service
      command: start






Adding more machines

To add more instances to the cluster, just launch more with the same cloud-config adjusting the FQDN or removing the statement. New instances will join the cluster regardless of location provided that security groups are correctly configured.




Modifying cloud-config

It is possible to modify the cloud-config contents during the lifetime of an instance. In order to modify the contents, you need to use the API command updateVirtualMachine with the machine in a stopped state.

cs stopVirtualMachine id=<UUID of instance>
cs updateVirtualMachine id=<UUID of instance> userData=<base64 encoded value of your cloud-config>
cs startVirtualMachine id=<UUID of instance>





note: switch the request type from GET to POST if the userData payload is longer than 2KB.

API reference for updateVirtualMachine [https://community.exoscale.ch/compute/api/#updatevirtualmachine_GET]






SSH to your CoreOS Container Linux instances

Container Linux does not allow root connection to the instance. By default, it uses the core user instead of root and doesn’t use a password for authentication. You’ll need to add an SSH key(s) via the web console or add keys/passwords via your cloud-config in order to log in.

To log in to a Container Linux instance after it’s created click on its IP address or run:

ssh core@<ip address>





Optionally, you may want to configure your ssh-agent [https://github.com/coreos/fleet/blob/master/Documentation/using-the-client.md#remote-fleet-access] to more easily run fleet commands.




Launching instances


Via the API

Install and configure the command line client (Python required) with your API details [https://portal.exoscale.ch/account/profile/api].

pip install cs
vi $HOME/.cloudstack.ini
[cloudstack]
endpoint = https://api.exoscale.ch/compute
key = api key
secret = secret





To launch a Small 2GB instance with the current Stable Container Linux image:

note: template ids are available on the Exoscale website [https://www.exoscale.ch/open-cloud/templates/].

cs deployVirtualMachine templateId=2a196b89-0c50-4400-9d42-ef43bcc0fa99 serviceOfferingId=21624abb-764e-4def-81d7-9fc54b5957fb zoneId=1128bd56-b4d9-4ac6-a7b9-c715b187ce11 keyPair=[keypair name]





Be sure to specify your SSH key to be able to access the machine. Management of SSH keys is detailed on the SSH key page [https://community.exoscale.ch/compute/documentation/#SSH_keypairs]. For more details, check out Exoscale’s API documentation [https://community.exoscale.ch/compute/api/].




Via the web console


	Open the “add new instance” [https://portal.exoscale.ch/compute/instances/add] page in the Exoscale web portal.


	Give the machine a hostname, and choose a zone.


	Choose the Container Linux template





  
    
    Choosing Exoscale template

  



4. Choose the instance size

  
    
    Choosing Exoscale instance size

  



5. Select your SSH keys.
6. Add your your optional cloud-config.

  
    
    Exoscale cloud-config

  



7. Create your instanceUnlike other Exoscale images where the root password is randomly set at startup, Container Linux does not have password logon activated. You will need to configure your public key with Exoscale [https://community.exoscale.ch/compute/documentation/#SSH_keypairs] in order to login to the Container Linux instances or to specify external keys using cloud-config.






Using CoreOS Container Linux

Now that you have a machine booted it is time to play around. Check out the Container Linux Quickstart guide or dig into more specific topics [https://coreos.com/docs].







          

      

      

    

  

  
    
    Running CoreOS Container Linux on Google Compute Engine
    

    
 
  

    
      
          
            
  
Running CoreOS Container Linux on Google Compute Engine

Before proceeding, you will need a GCE account (GCE free trial  [https://cloud.google.com/free-trial/?utm_source=coreos&utm_medium=partners&utm_campaign=partner-free-trial]) and install gcloud [https://cloud.google.com/sdk/] on your machine. In each command below, be sure to insert your project name in place of <project-id>.

After installation, log into your account with gcloud auth login and enter your project ID when prompted.


Container Linux Config

Container Linux allows you to configure machine parameters, configure networking, launch systemd units on startup, and more via Container Linux Configs. These configs are then transpiled into Ignition configs and given to booting machines. Head over to the docs to learn about the supported features.

You can provide a raw Ignition config to Container Linux via the Google Cloud console’s metadata field user-data or via a flag using gcloud.

As an example, this config will configure and start etcd:

etcd:
  # All options get passed as command line flags to etcd.
  # Any information inside curly braces comes from the machine at boot time.

  # multi_region and multi_cloud deployments need to use {PUBLIC_IPV4}
  advertise_client_urls:       "http://{PRIVATE_IPV4}:2379"
  initial_advertise_peer_urls: "http://{PRIVATE_IPV4}:2380"
  # listen on both the official ports and the legacy ports
  # legacy ports can be omitted if your application doesn't depend on them
  listen_client_urls:          "http://0.0.0.0:2379"
  listen_peer_urls:            "http://{PRIVATE_IPV4}:2380"
  # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
  # specify the initial size of your cluster with ?size=X
  discovery:                   "https://discovery.etcd.io/<token>"








Choosing a channel

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates] with different schedules per channel. You can disable this feature, although we don’t recommend it. Read the release notes [https://coreos.com/releases] for specific features and bug fixes.

Create 3 instances from the image above using our Ignition from example.ign:


  
    	Stable Channel

    	Beta Channel

    	Alpha Channel

  

  
    
      The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

      gcloud compute instances create core1 core2 core3 --image-project coreos-cloud --image-family coreos-alpha --zone us-central1-a --machine-type n1-standard-1 --metadata-from-file user-data=config.ign

    

    
      The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.

      gcloud compute instances create core1 core2 core3 --image-project coreos-cloud --image-family coreos-beta --zone us-central1-a --machine-type n1-standard-1 --metadata-from-file user-data=config.ign

    

    
      The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.

      gcloud compute instances create core1 core2 core3 --image-project coreos-cloud --image-family coreos-stable --zone us-central1-a --machine-type n1-standard-1 --metadata-from-file user-data=config.ign

    

  



Additional storage

Additional disks attached to instances can be mounted with a .mount unit. Each disk can be accessed via /dev/disk/by-id/google-<disk-name>. Here’s the Container Linux Config to format and mount a disk called database-backup:

storage:
  filesystems:
    - mount:
        device: /dev/disk/by-id/scsi-0Google_PersistentDisk_database-backup
        format: ext4

systemd:
  units:
    - name: media-backup.mount
      enable: true
      contents: |
        [Mount]
        What=/dev/disk/by-id/scsi-0Google_PersistentDisk_database-backup
        Where=/media/backup
        Type=ext4

        [Install]
        RequiredBy=local-fs.target





For more information about mounting storage, Google’s own documentation [https://developers.google.com/compute/docs/disks#attach_disk] is the best source. You can also read about mounting storage on Container Linux.




Adding more machines

To add more instances to the cluster, just launch more with the same Ignition config inside of the project.






SSH and users

Users are added to Container Linux on GCE by the user provided configuration (i.e. Ignition, cloudinit) and by either the GCE account manager or GCE OS Login [https://cloud.google.com/compute/docs/instances/managing-instance-access]. OS Login is used if it is enabled for the instance, otherwise the GCE account manager is used.


Using the GCE account manager

You can log in your Container Linux instances using:

gcloud compute ssh --zone us-central1-a core@<instance-name>





Users other than core, which are set up by the GCE account manager, may not be a member of required groups. If you have issues, try running commands such as journalctl with sudo.




Using OS Login

You can log in using your Google account on instances with OS Login enabled. OS Login needs to be enabled in the GCE console [https://cloud.google.com/compute/docs/instances/managing-instance-access#enable_oslogin] and on the instance. It is enabled by default on instances provisioned with Container Linux 1898.0.0 or later. Once enabled, you can log into your Container Linux instances using:

gcloud compute ssh --zone us-central1-a <instance-name>





This will use your GCE user to log in.


Disabling OS Login on newly provisioned nodes

You can disable the OS Login functionality by masking the oem-gce-enable-oslogin.service unit:

systemd:
  units:
    - name: oem-gce-enable-oslogin.service
      mask: true





When disabling OS Login functionality on the instance, it is also recommended to disable it in the GCE console.








Using CoreOS Container Linux

Now that you have a machine booted it is time to play around. Check out the Container Linux Quickstart guide or dig into more specific topics [https://coreos.com/docs].







          

      

      

    

  

  
    
    Running CoreOS Container Linux on Ikoula Cloud
    

    
 
  

    
      
          
            
  
Running CoreOS Container Linux on Ikoula Cloud

Ikoula [https://www.ikoula.com] is a French cloud hosting company. Its CloudStack 4.5 based cloud is deployed on its own datacenters worldwide on several Basic and Advanced networking zones. Currently zones are available on France, Germany, Netherlands, USA East, Singapore.


Networking zones on Ikoula Cloud

On Basic networking zones, you have the support of security groups and a directly assigned public IP address as in many other cloud providers.

On Advanced networking zones, you have a virtual router deployed which protects your own private VLAN network. Instances deployed on this private VLAN receive a private IP address from a range you can choose, and they have external access through the virtual router. On Advanced networking zones, you have access to VPC which can be connected to your own office network by means of using site-to-site VPNs.




CoreOS Container Linux images on Ikoula Cloud

You can deploy and boot officially-built Container Linux images on Ikoula Cloud!

You will need:


	a valid account


	a valid cloud public subscription




Please note that images deployed on Ikoula Cloud update themselves automatically. The reboot strategy is “best effort”, which means that if the deployed Container Linux is standalone then it will reboot automatically. You can, however, disable this behaviour. We also provide a FAQ on how to achieve [https://ikoula.wiki/help/Mettre_a_jour_CoreOS_manuellement/fr] this.




Creating your account and subscribing to Ikoula Cloud

Go make them both at Public Cloud Ikoula [https://express.ikoula.com/en/public-cloud]. Choose any type of virtual machine and then proceed to create your account and subscription.

You will soon receive access to your own Extranet [https://extranet.ikoula.com].




Deploying instances using Extranet portal a.k.a “one click deployment” on basic zones

Open your browser and point it to https://extranet.Ikoula.com [https://extranet.ikoula.com]. If needed, change the language by using flag icons on the right near “Choose your language”.

Click on “Click here” to connect.

To login fill in your credentials (email address and password of your account):


  
    

    
    Login to Extranet Ikoula Portal

    

    

  


Then click on public cloud:


  
    

    
    Link to public cloud subscriptions on Extranet Ikoula Portal

    

    

  


Your public cloud subscription appear:


  
    

    
    Cloud subscriptions on Extranet Ikoula portal

    

    

  


If you click on it, you’ll have access to a menu that quickly permits you to deploy and configure an instance of Container Linux on a Basic networking zone of your choice:


  
    

    
    The "One Click deployment" on Extranet Ikoula portal

    

    

  


To create your instance:


	Fill The VM Name.


	Choose “CoreOS Stable 64bits SSH KEYPAIR with core user” on Template section.


	Choose your service offering, that will represent the power of your instance, the resources that it will get.


	Choose the incoming firewall rules that will be accepted (we recommend to open at least SSH, by default all ports are closed).


	Choose the authentication type. On Container Linux this is a sshkeypair, choose to create on, or use an already existent one.


	Choose the Basic zone in which you will want your instance to be deployed.




Click on CREATE MY INSTANCE, then, thanks to SSD-backed Ikoula Cloud hosts, you will rapidly get information about your instance:


  
    

    
    Instance Container Linux deployed on Extranet Ikoula portal

    

    

  


Finally with the IP address the sshkey, and the firewall rule, you will be able to connect to your instance.




Deploying instances using CloudMonkey on either basic or advanced networking zones

The Ikoula Cloud offers a template “CoreOS Stable” which is available on every all of the different geographic zones (France, USA East, Singapore, Germany, Netherlands).

Consistent with the normal use of Container Linux, the SSH connection to an instance deployed with this template is only possible with the user “core” and through SSH key authentication. You can then rely on official FAQs Container Linux without encountering unexpected behavior.

In the following procedure, we will use the tool Apache CloudMonkey to deploy a Container Linux instance. To be able to use CloudMonkey, you must have valid API and secret keys. You have received them both on subscription to Ikoula Cloud service. If you don’t have them, please follow this FAQ [https://ikoula.wiki/help/Utiliser_le_moteur_API_du_cloud_public_ikoula]
to generate them.




Prepare CloudMonkey environment

Install CloudMonkey by issuing (Debian based Linux only) these commands:

sudo apt-get install python-pip
pip install cloudmonkey





Configure CloudMonkey by issuing these commands, replacing API and secret keys with your own:

$ cloudmonkey
Apache CloudStack CloudMonkey 5.0.0. Type help or ? to list commands.

> set host cloudStack.ikoula.com
> set path /client/api
> set protocol https
> set port 443
> set apikey <API KEY>
> set secretkey <SECRET KEY>








Generate your keys

Create your CloudStack SSH key pair:

$ cloudmonkey
Apache CloudStack CloudMonkey 5.0.0. Type help or ? to list commands.

> create sshkeypair name=MySSHkey
keypair:
name = MySSHkey
fingerprint = 15:51:8a:8e:04:d3:78:5e:dd:5c:7f:50:f8:e8:81:89
privatekey = -----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQC+aaZOBbsJxSfrUrgIB29gncJeZ5leAH+b4d1+ARRPZgiYM50K
b0X6FUBk+qDKTjsqQHZuYiyXbpt/JXq1WUukaY6Xv0L13ydLcOUpxekXxHeELNg/
QXyP+gKzr6rGgGZwFSwJoZGmi3U9QM661/pKzfie6cOxyZ7zHNhdMZqW5QIDAQAB
AoGBAI8/vDWGaif3gwiuunSP42K0TL3pAqCNj3MegRuChF0XTe/zJHntLJ/vzPoq
8zw/jpNC29Y/VXy3YZROBfrYquY/KjnfbaQWEBXNNYjBXJcL00MCVOhQTqHxQoJo
HVsA+1zriXpAA1a7hBw/GzTbhB/tC7w2V2eYTfIF4exdL10hAkEA+bjspo7KAzwF
ysVoRZfGWdGl4cDC4zR290URXplVJJ3t2MZKD0zW04ajNOLMG5ve5fwGbTYfhJ3/
CICQ41WTewJBAMMzCnWrOOyjJEQo3QFZX9QEtMSCJGeiGW04u/lB8XiT5AXIdGEk
QIAsSYdgQrDw02nQ7rWGUBnGdJ7PlSXKwR8CQQCwpISRlLOE8jJOqrEFeUTPSCME
u6uft/7nDi4pMmEt06DpE+pTRFE5syVDRaKHbQyQtmN9YSmOT4yVYQwcIu5[...]
-----END RSA PRIVATE KEY-----





Paste this SSH key pair in a restricted file (MySSHkey in our example) with permissions to owner read only (400):

$ cat MySSHkey
-----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQC+aaZOBbsJxSfrUrgIB29gncJeZ5leAH+b4d1+ARRPZgiYM50K
b0X6FUBk+qDKTjsqQHZuYiyXbpt/JXq1WUukaY6Xv0L13ydLcOUpxekXxHeELNg/
QXyP+gKzr6rGgGZwFSwJoZGmi3U9QM661/pKzfie6cOxyZ7zHNhdMZqW5QIDAQAB
AoGBAI8/vDWGaif3gwiuunSP42K0TL3pAqCNj3MegRuChF0XTe/zJHntLJ/vzPoq
8zw/jpNC29Y/VXy3YZROBfrYquY/KjnfbaQWEBXNNYjBXJcL00MCVOhQTqHxQoJo
HVsA+1zriXpAA1a7hBw/GzTbhB/tC7w2V2eYTfIF4exdL10hAkEA+bjspo7KAzwF
ysVoRZfGWdGl4cDC4zR290URXplVJJ3t2MZKD0zW04ajNOLMG5ve5fwGbTYfhJ3/
CICQ41WTewJBAMMzCnWrOOyjJEQo3QFZX9QEtMSCJGeiGW04u/lB8XiT5AXIdGEk
QIAsSYdgQrDw02nQ7rWGUBnGdJ7PlSXKwR8CQQCwpISRlLOE8jJOqrEFeUTPSCME
u6uft/7nDi4pMmEt06DpE+pTRFE5syVDRaKHbQyQtmN9YSmOT4yVYQwcIu [...]
-----END RSA PRIVATE KEY-----

$ chmod 400 MySSHkey








Deploy CoreOS Container Linux on an advanced zone


Deploy your CoreOS Container Linux instance with your SSH key pair

This example is made in Advanced networking zone, so we assume that you have already created your VPC or network:

$ cloudmonkey
Apache CloudStack CloudMonkey 5.0.0. Type help or ? to list commands.

> deploy virtualmachine zoneid=<Zone ID> networkids=<Network ID> serviceofferingid=<Serviceoffering ID> templateid=<Template ID> name=<Instance Name> displayname=<Instance Name to display> keypair=MySSHkey





You need to adapt the “<>” fields. Hint: To get correct IDs, either use tab completion when issuing the command or use API commands to get them.




Configure a NAT rule (we consider that you have already created a firewall rule that allows you to connect to the SSH TCP/22 port)

$ cloudmonkey
Apache CloudStack CloudMonkey 5.0.0. Type help or ? to list commands.

> create portforwardingrule virtualmachineid=<ID of the deployed Container Linux instance above> networkid=<Network ID> ipaddressid=<Public address IP of your network> privateport=22 publicport=<port publique> protocol=tcp





You need to adapt the “<>” fields. After launching this command, you will receive the IP address information.




Connect to your CoreOS Container Linux instance through SSH

$ ssh -i MySSHkey core@178.170.X.X
CoreOS stable (723.3.0)
core@coreos557x64 ~ $"










Deploy CoreOS Container Linux on a basic zone

Deploying on a Basic networking zone is somewhat similar, but you don’t need to create NAT rule, just configure correctly the security group.

$ CloudMonkey
Apache CloudStack CloudMonkey 5.0.0. Type help or ? to list commands.

> deploy virtualmachine zoneid=<Zone ID> templateid=<Container Linux Template ID of this zone> serviceofferingid=<Serviceoffering ID> securitygroupids=<ID of your security group> keypair=MySSHkey name=<Instance Name>










Going further with CoreOS Container Linux on Ikoula Cloud

Now that you have successfully deployed a Container Linux instance, you should consult the quickstart on Container Linux and plan a cluster!





          

      

      

    

  

  
    
    Running CoreOS Container Linux on RimuHosting’s LaunchtimeVPS service
    

    
 
  

    
      
          
            
  
Running CoreOS Container Linux on RimuHosting’s LaunchtimeVPS service

RimuHosting’s LaunchtimeVPS service provides hosted virtual machines, and provides Container Linux as one of their standard images. Customers can launch these VMs via the web interface or via the RimuHosting server management API.


About the RimuHosting CoreOS Container Linux setup

RimuHosting automatically creates the systemd networking files (no need to put networking setup in the cloud init block).

The provided image is from the Container Linux stable channel and is updated with each stable release.

RimuHosting uses the Container Linux PXE kernel and initrd (stored on your VM at /boot). We boot up the VM via pv-grub (so the kernel used is provided by Container Linux, not the Xen-based VM host).


Public SSH keys

The Container Linux default user is named core, and password authentication and root logins are both disabled. You’ll need to add an SSH key(s) via the web interface or add keys/passwords via your cloud-config in order to log in.

Ensure you have set your SSH public keys [https://launchtimevps.com/cp/sshkeys.jsp]. If you do not have a RimuHosting account, use the register link.

This process will set the RimuHosting SSH key on the core and root user as well as adding your own SSH keys. You can override this if you do not wish us to have access, via the cloudinit ssh-authorized-keys or write_files declarations.




Gotchas

The cloud-config file is placed at /var/lib/coreos-install/user_data. It runs on each server start. If you do not want the actions to be repeated at each server start, remove the file as part of the cloudinit process.




Cloud-config

You provide raw cloud-config data to Container Linux as part of the web interface install process or via the RimuHosting API [http://apidocs.rimuhosting.com/jaxrsdocs/index.html] command line install method.

The $private_ipv4 and $public_ipv4 substitution variables are fully supported in cloud-config on RimuHosting. In order for $private_ipv4 to be populated, the VM must have private networking enabled.






Launching VMs


Via the web interface


	Ensure you have set your SSH public keys [https://launchtimevps.com/cp/sshkeys.jsp]. If you do not have a RimuHosting account, use the register link.


	Configure a new VM [https://launchtimevps.com/#variable_plan] (including memory, disk size and data center. Start the order.


	In the Software installs section select the Container Linux image (currently only the stable channel is provided). Tab away from that field to reveal the cloud config input field. Then provide your cloud config.





  
    
      
    
    Choosing the Container Linux image and providing a cloud config.

  



4. Start the install. The server will be setup and you will be notified when that is complete.A VM can be reinstalled (with a fresh/clean Container Linux image and different cloud-config) via the reinstall interface [https://rimuhosting.com/cp/vps/disk/install.jsp].




Via the API

Set your public SSH keys [https://launchtimevps.com/cp/sshkeys.jsp].

git clone –depth 1 the Python driver for the RimuHosting API [https://github.com/pbkwee/RimuHostingAPI]:

git clone --depth 1 git@github.com:pbkwee/RimuHostingAPI.git





Install the library:

python3 setup.py build install





If you do not already have a server with us, you will need to email RimuHosting and ask them to enable automated server setups on your account.

Get a server management API key [https://rimuhosting.com/cp/apikeys.jsp]

Set the API key as an environment variable:

export RIMUHOSTING_APIKEY=00000000123456789





Or set the key in a .rimuhosting config file:

echo "export RIMUHOSTING_APIKEY=00000000123456789" >> ~/.rimuhosting





Edit the server spec at sample-configs/unmodified/servers/server.json e.g.

{
  "vps_parameters": {
    "disk_space_mb": "8192",
    "memory_mb": "4096"
  },
  "instantiation_options": {
    "distro": "coreos.64",
    "domain_name": "coreos-master.example.com"
  }
}





Edit the cloud config data you want to use at sample-configs/defaults/cloud-init/master.yaml.

Create the Container Linux VM:

$ python3 mkvm.py --server_json sample-configs/unmodified/servers/server.json \
--cloud_config sample-configs/defaults/cloud-init/master.yaml





For more details, check out RimuHosting’s API documentation [http://apidocs.rimuhosting.com/jaxrsdocs/index.html].




Adding more machines

To add more instances to the cluster, just launch more with the same cloud-config. New instances will join the cluster regardless of VM location.




SSH to your VM

To connect to a VM after it’s created (VM creation may take up to a couple of minutes), run:

ssh core@<ip address>





Optionally, you may want to configure your ssh-agent [https://github.com/coreos/fleet/blob/master/Documentation/using-the-client.md#remote-fleet-access] to more easily run fleet commands.






Using CoreOS Container Linux

Now that you have a cluster bootstrapped it is time to play around. Check out the Container Linux quickstart guide or dig into more specific topics [https://coreos.com/docs].







          

      

      

    

  

  
    
    ニフティクラウド上でのCoreOSの起動
    

    
 
  

    
      
          
            
  
ニフティクラウド上でのCoreOSの起動

事前にニフティクラウド CLI [http://cloud.nifty.com/api/cli/]をインストールする必要があります。These instructions are also available in English.


Cloud-config

CoreOSはcloud-configにより、マシンのパラメータを設定したり、起動時にsystemdのunitを立ち上げたりすることが可能です。サポートしている機能はこちら [https://github.com/coreos/coreos-cloudinit/blob/master/Documentation/cloud-config]で確認してください。cloud-configは最小限で有用な状態にクラスターを立ち上げることを目的としており、複数のホストで共通ではない設定をするためには使うべきではありません。ニフティクラウド上では、cloud-configはサーバーの起動中に編集でき、次回起動時に反映されます。

ニフティクラウドCLI [http://cloud.nifty.com/api/cli/]を使ってcloud-configを設定することができます。

最も一般的なcloud-configは下記のようなものです。

#cloud-config

coreos:
  etcd2:
    # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
    # specify the initial size of your cluster with ?size=X
    discovery: https://discovery.etcd.io/<token>
    # multi-region and multi-cloud deployments need to use $public_ipv4
    advertise-client-urls: http://$private_ipv4:2379,http://$private_ipv4:4001
    initial-advertise-peer-urls: http://$private_ipv4:2380
    # listen on both the official ports and the legacy ports
    # legacy ports can be omitted if your application doesn't depend on them
    listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
    listen-peer-urls: http://$private_ipv4:2380
  units:
    - name: etcd2.service
      command: start
    - name: fleet.service
      command: start





$private_ipv4と$public_ipv4という変数はニフティクラウド上のcloud-configでサポートされています。




チャンネルの選択

CoreOSはチャンネル毎に別のスケジュールで自動アップデート [https://coreos.com/why/#updates]されるように設計されています。推奨はしませんが、この機能は無効にすることもできます。各機能やバグフィックスについてはリリースノート [https://coreos.com/releases]を読んでください。


  
    	Stableチャンネル

    	Betaチャンネル

    	Alphaチャンネル

  

  
    
      AlphaチャンネルはMasterをぴったりと追っていて、頻繁にリリースされます。テストのために最新のDocker、etcd、fleetの利用が可能です。現在のバージョンはCoreOS {{site.alpha-channel}}です。

      $ZONE, $TYPE, $FW_ID and $SSH_KEY_IDを指定し、ニフティクラウドCLIで立ち上げます。

      nifty-run-instances $(nifty-describe-images --delimiter ',' --image-name "CoreOS Alpha {{site.alpha-channel}}" | awk -F',' '{print $2}') --key $SSH_KEY_ID --availability-zone $ZONE --instance-type $TYPE -g $FW_ID -f cloud-config.yml -q POST

    

    
      BetaチャンネルはAlphaリリースが昇格されたものです。現在のバージョンはCoreOS {{site.beta-channel}}です。

      $ZONE, $TYPE, $FW_ID and $SSH_KEY_IDを指定し、ニフティクラウドCLIで立ち上げます。

      nifty-run-instances $(nifty-describe-images --delimiter ',' --image-name "CoreOS Beta {{site.beta-channel}}" | awk -F',' '{print $2}') --key $SSH_KEY_ID --availability-zone $ZONE --instance-type $TYPE -g $FW_ID -f cloud-config.yml -q POST

    

    
      プロダクションクラスターではStableチャンネルを使用すべきです。CoreOSの各バージョンは昇格されるまでにBetaとAlphaチャンネルで検証済みです。現在のバージョンはCoreOS {{site.stable-channel}}です。

      $ZONE, $TYPE, $FW_ID and $SSH_KEY_IDを指定し、ニフティクラウドCLIで立ち上げます。

      nifty-run-instances $(nifty-describe-images --delimiter ',' --image-name "CoreOS Stable {{site.stable-channel}}" | awk -F',' '{print $2}') --key $SSH_KEY_ID --availability-zone $ZONE --instance-type $TYPE -g $FW_ID -f cloud-config.yml -q POST

    

  



サーバーの追加

さらにクラスタにサーバーを追加するには、同じcloud-config、適当なファイアウォールグループで立ち上げるだけです。






SSH

下記のコマンドでログインできます。

ssh core@<ip address> -i <path to keyfile>








CoreOSの利用

起動済みのマシンを手に入れたら、遊ぶ時間です。
CoreOSクイックスタートを見るか、各トピックス [https://coreos.com/docs]を掘り下げましょう。







          

      

      

    

  

  
    
    Running CoreOS Container Linux on NIFTY Cloud
    

    
 
  

    
      
          
            
  
Running CoreOS Container Linux on NIFTY Cloud

NIFTY Cloud is a Japanese cloud computing provider. These instructions are also available in Japanese. Before proceeding, you will need to install NIFTY Cloud CLI [https://translate.google.com/translate?hl=en&sl=ja&tl=en&u=http%3A%2F%2Fcloud.nifty.com%2Fapi%2Fcli%2F].


Cloud-config

Container Linux allows you to configure machine parameters, launch systemd units on startup and more via cloud-config. Jump over to the docs to learn about the supported features [https://github.com/coreos/coreos-cloudinit/blob/master/Documentation/cloud-config]. Cloud-config is intended to bring up a cluster of machines into a minimal useful state and ideally shouldn’t be used to configure anything that isn’t standard across many hosts. On NIFTY Cloud, the cloud-config can be modified while the instance is running and will be processed next time the machine boots.

You can provide cloud-config to Container Linux via NIFTY Cloud CLI [https://translate.google.com/translate?hl=en&sl=ja&tl=en&u=http%3A%2F%2Fcloud.nifty.com%2Fapi%2Fcli%2F].

The most common cloud-config for NIFTY Cloud looks like:

#cloud-config

coreos:
  etcd2:
    # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
    # specify the initial size of your cluster with ?size=X
    discovery: https://discovery.etcd.io/<token>
    # multi-region and multi-cloud deployments need to use $public_ipv4
    advertise-client-urls: http://$private_ipv4:2379,http://$private_ipv4:4001
    initial-advertise-peer-urls: http://$private_ipv4:2380
    # listen on both the official ports and the legacy ports
    # legacy ports can be omitted if your application doesn't depend on them
    listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
    listen-peer-urls: http://$private_ipv4:2380
  units:
    - name: etcd2.service
      command: start
    - name: fleet.service
      command: start





The $private_ipv4 and $public_ipv4 substitution variables are fully supported in cloud-config on NIFTY Cloud.




Choosing a channel

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates] with different schedules per channel. You can disable this feature, although we don’t recommend it. Read the release notes [https://coreos.com/releases] for specific features and bug fixes.


  
    	Stable Channel

    	Beta Channel

    	Alpha Channel

  

  
    
      The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

      Launch via NIFTY Cloud CLI by specifying $ZONE, $TYPE, $FW_ID and $SSH_KEY_ID:

      nifty-run-instances $(nifty-describe-images --delimiter ',' --image-name "CoreOS Alpha {{site.alpha-channel}}" | awk -F',' '{print $2}') --key $SSH_KEY_ID --availability-zone $ZONE --instance-type $TYPE -g $FW_ID -f cloud-config.yml -q POST

    

    
      The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.

      Launch via NIFTY Cloud CLI by specifying $ZONE, $TYPE, $FW_ID and $SSH_KEY_ID:

      nifty-run-instances $(nifty-describe-images --delimiter ',' --image-name "CoreOS Beta {{site.beta-channel}}" | awk -F',' '{print $2}') --key $SSH_KEY_ID --availability-zone $ZONE --instance-type $TYPE -g $FW_ID -f cloud-config.yml -q POST

    

    
      The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.

      Launch via NIFTY Cloud CLI by specifying $ZONE, $TYPE, $FW_ID and $SSH_KEY_ID:

      nifty-run-instances $(nifty-describe-images --delimiter ',' --image-name "CoreOS Stable {{site.stable-channel}}" | awk -F',' '{print $2}') --key $SSH_KEY_ID --availability-zone $ZONE --instance-type $TYPE -g $FW_ID -f cloud-config.yml -q POST

    

  



Adding more machines

To add more instances to the cluster, just launch more with the same cloud-config and the appropriate firewall group.






SSH

You can log in your Container Linux instances using:

ssh core@<ip address> -i <path to keyfile>








Using CoreOS Container Linux

Now that you have a machine booted it is time to play around. Check out the Container Linux Quickstart guide or dig into more specific topics [https://coreos.com/docs].







          

      

      

    

  

  
    
    Running CoreOS Container Linux on OpenStack
    

    
 
  

    
      
          
            
  
Running CoreOS Container Linux on OpenStack

These instructions will walk you through downloading Container Linux for OpenStack, importing it with the glance tool, and running your first cluster with the nova tool.


Import the image

These steps will download the Container Linux image, uncompress it, and then import it into the glance image store.




Choosing a channel

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates] with different schedules per channel. You can disable this feature, although we don’t recommend it. Read the release notes [https://coreos.com/releases] for specific features and bug fixes.


  
    	Stable Channel

    	Beta Channel

    	Alpha Channel

  

  
    
      The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.


$ wget https://alpha.release.core-os.net/amd64-usr/current/coreos_production_openstack_image.img.bz2
$ bunzip2 coreos_production_openstack_image.img.bz2


    

    
      The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.


$ wget https://beta.release.core-os.net/amd64-usr/current/coreos_production_openstack_image.img.bz2
$ bunzip2 coreos_production_openstack_image.img.bz2


    

  
      The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.


$ wget https://stable.release.core-os.net/amd64-usr/current/coreos_production_openstack_image.img.bz2
$ bunzip2 coreos_production_openstack_image.img.bz2


    

  


Once the download completes, add the Container Linux image into Glance:

$ glance image-create --name Container-Linux \
  --container-format bare \
  --disk-format qcow2 \
  --file coreos_production_openstack_image.img
+------------------+--------------------------------------+
| Property         | Value                                |
+------------------+--------------------------------------+
| checksum         | 4742f3c30bd2dcbaf3990ac338bd8e8c     |
| container_format | ovf                                  |
| created_at       | 2013-08-29T22:21:22                  |
| deleted          | False                                |
| deleted_at       | None                                 |
| disk_format      | qcow2                                |
| id               | cdf3874c-c27f-4816-bc8c-046b240e0edd |
| is_public        | False                                |
| min_disk         | 0                                    |
| min_ram          | 0                                    |
| name             | coreos                               |
| owner            | 8e662c811b184482adaa34c89a9c33ae     |
| protected        | False                                |
| size             | 363660800                            |
| status           | active                               |
| updated_at       | 2013-08-29T22:22:04                  |
+------------------+--------------------------------------+





Optionally add the --visibility public flag to make this image available outside of the configured OpenStack account tenant.




Container Linux Configs

Container Linux allows you to configure machine parameters, launch systemd units on startup and more via Container Linux Configs. These configs are then transpiled into Ignition configs and given to booting machines. Jump over to the docs to learn about the supported features. We’re going to provide our Container Linux Config to OpenStack via the user-data flag. Our Container Linux Config will also contain SSH keys that will be used to connect to the instance. In order for this to work your OpenStack cloud provider must support config drive [http://docs.openstack.org/user-guide/cli_config_drive.html] or the OpenStack metadata service.

A common Container Linux Config for OpenStack looks like:

etcd:
  # All options get passed as command line flags to etcd.
  # Any information inside curly braces comes from the machine at boot time.

  # multi_region and multi_cloud deployments need to use {PUBLIC_IPV4}
  advertise_client_urls:       "http://{PRIVATE_IPV4}:2379"
  initial_advertise_peer_urls: "http://{PRIVATE_IPV4}:2380"
  # listen on both the official ports and the legacy ports
  # legacy ports can be omitted if your application doesn't depend on them
  listen_client_urls:          "http://0.0.0.0:2379"
  listen_peer_urls:            "http://{PRIVATE_IPV4}:2380"
  # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
  # specify the initial size of your cluster with ?size=X
  discovery:                   "https://discovery.etcd.io/<token>"
passwd:
  users:
    - name: core
      ssh_authorized_keys:
        - ssh-rsa ABCD...





The {PRIVATE_IPV4} and {PUBLIC_IPV4} substitution variables are fully supported in Container Linux Configs on OpenStack deployments using the metadata service. Unfortunately systems relying on config drive are currently unsupported.




Launch cluster

Boot the machines with the nova CLI, referencing the image ID from the import step above and your JSON file from ct:

nova boot \
--user-data ./config.ign \
--image cdf3874c-c27f-4816-bc8c-046b240e0edd \
--key-name coreos \
--flavor m1.medium \
--min-count 3 \
--security-groups default,coreos





To use config drive you may need to add --config-drive=true to command above.

If you have more than one network, you may have to be explicit in the nova boot command.

--nic net-id=5b9c5ef6-28b9-4781-ac18-d7d86765fd38





You can see the IDs for your configured networks by running

nova network-list
+--------------------------------------+---------+------+
| ID                                   | Label   | Cidr |
+--------------------------------------+---------+------+
| f54b48c7-34fc-4828-8ee9-21b623c7b8f9 | public  | -    |
| 5b9c5ef6-28b9-4781-ac18-d7d86765fd38 | private | -    |
+--------------------------------------+---------+------+





Your first Container Linux cluster should now be running. The only thing left to do is find an IP and SSH in.

$ nova list
+--------------------------------------+-----------------+--------+------------+-------------+-------------------+
| ID                                   | Name            | Status | Task State | Power State | Networks          |
+--------------------------------------+-----------------+--------+------------+-------------+-------------------+
| a1df1d98-622f-4f3b-adef-cb32f3e2a94d | coreos-a1df1d98 | ACTIVE | None       | Running     | private=10.0.0.3  |
| db13c6a7-a474-40ff-906e-2447cbf89440 | coreos-db13c6a7 | ACTIVE | None       | Running     | private=10.0.0.4  |
| f70b739d-9ad8-4b0b-bb74-4d715205ff0b | coreos-f70b739d | ACTIVE | None       | Running     | private=10.0.0.5  |
+--------------------------------------+-----------------+--------+------------+-------------+-------------------+





Finally SSH into an instance, note that the user is core:

$ chmod 400 core.pem
$ ssh -i core.pem core@10.0.0.3
   ______                ____  _____
  / ____/___  ________  / __ \/ ___/
 / /   / __ \/ ___/ _ \/ / / /\__ \
/ /___/ /_/ / /  /  __/ /_/ /___/ /
\____/\____/_/   \___/\____//____/

core@10-0-0-3 ~ $








Adding more machines

Adding new instances to the cluster is as easy as launching more with the same Container Linux Config. New instances will join the cluster assuming they can communicate with the others.

Example:

nova boot \
--user-data ./config.ign \
--image cdf3874c-c27f-4816-bc8c-046b240e0edd \
--key-name coreos \
--flavor m1.medium \
--security-groups default,coreos








Multiple clusters

If you would like to create multiple clusters you’ll need to generate and use a new discovery token. Change the token value on the etcd discovery parameter in the Container Linux Config, and boot new instances.




Using CoreOS Container Linux

Now that you have instances booted it is time to play around. Check out the Container Linux Quickstart guide or dig into more specific topics [https://coreos.com/docs].







          

      

      

    

  

  
    
    Running CoreOS Container Linux on Packet
    

    
 
  

    
      
          
            
  
Running CoreOS Container Linux on Packet

Packet is a bare metal cloud hosting provider. Container Linux is installable as one of the default operating system options. You can deploy Container Linux servers via the Packet portal or API.


Deployment instructions

The first step in deploying any devices on Packet is to first create an account and decide if you’d like to deploy via our portal or API. The portal is appropriate for small clusters of machines that won’t change frequently. If you’ll be deploying a lot of machines, or expect your workload to change frequently it is much more efficient to use the API. You can generate an API token through the portal once you’ve set up an account and payment method. Create an account here: Packet Account Registration [https://www.packet.net/promo/coreos/].


Projects

Packet has a concept of ‘projects’ that represent a grouping of machines that defines several other aspects of the service. A project defines who on the team has access to manage the machines in your account. Projects also define your private network; all machines in a given project will automatically share backend network connectivity. The SSH keys of all team members associated with a project will be installed to all newly provisioned machines in a project. All servers need to be in a project, even if there is only one server in that project.




Portal instructions

Once logged into the portal you will be able to click the ‘Deploy’ button and choose Container Linux from the menu of operating systems, and choose which project you want the server to be deployed in. If you choose to enter a custom Ignition config, you can click the ‘manage’ link and add that as well. The SSH key that you associate with your account and any other team member’s keys that are on the project will be added to your Container Linux machine once it is provisioned.




API instructions

If you elect to use the API to provision machines on Packet you should consider using one of our language libraries [https://www.packet.net/integrations/libraries/] to code against. As an example, this is how you would launch a single Type 1 machine in a curl command. Packet API Documentation [https://www.packet.net/dev/api/].

# Replace items in brackets (<EXAMPLE>) with the appropriate values.

curl -X POST \
-H 'Content-Type: application/json' \
-H 'Accept: application/json' \
-H 'X-Auth-Token: <API_TOKEN>' \
-d '{"hostname": "<HOSTNAME>", "plan": "baremetal_1", "facility": "ewr1", "operating_system": "coreos_alpha", "userdata": "<USERDATA>"}' \
https://api.packet.net/projects/<PROJECT_ID>/devices





Double quotes in the <USERDATA> value must be escaped such that the request body is valid JSON. See the Container Linux Config section below for more information about accepted forms of userdata.






Container Linux Configs

Container Linux allows you to configure machine parameters, configure networking, launch systemd units on startup, and more via Container Linux Configs. These configs are then transpiled into Ignition configs and given to booting machines. Head over to the docs to learn about the supported features. Note that Packet doesn’t allow an instance’s userdata to be modified after the instance has been launched. This isn’t a problem since Ignition only runs on the first boot.

You can provide a raw Ignition config to Container Linux via Packet’s userdata field.

As an example, this config will configure and start etcd:

etcd:
  # All options get passed as command line flags to etcd.
  # Any information inside curly braces comes from the machine at boot time.

  # multi_region and multi_cloud deployments need to use {PUBLIC_IPV4}
  advertise_client_urls:       "http://{PRIVATE_IPV4}:2379"
  initial_advertise_peer_urls: "http://{PRIVATE_IPV4}:2380"
  # listen on both the official ports and the legacy ports
  # legacy ports can be omitted if your application doesn't depend on them
  listen_client_urls:          "http://0.0.0.0:2379"
  listen_peer_urls:            "http://{PRIVATE_IPV4}:2380"
  # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
  # specify the initial size of your cluster with ?size=X
  discovery:                   "https://discovery.etcd.io/<token>"








Using CoreOS Container Linux

Now that you have a machine booted it is time to play around. Check out the Container Linux Quickstart guide or dig into more specific topics [https://coreos.com/docs].







          

      

      

    

  

  
    
    Running CoreOS Container Linux on Rackspace
    

    
 
  

    
      
          
            
  
Running CoreOS Container Linux on Rackspace

These instructions will walk you through running Container Linux on the Rackspace OpenStack cloud, which differs slightly from the generic OpenStack instructions. There are two ways to launch a Container Linux cluster: launch an entire cluster with Heat or launch machines with Nova.


Choosing a channel

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates] with different schedules per channel. You can disable this feature, although we don’t recommend it. Read the release notes [https://coreos.com/releases] for specific features and bug fixes.


  
    	Stable Channel

    	Beta Channel

    	Alpha Channel

  

  
    
      
        The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

        The following command can be used to determine the image IDs for Alpha:

        supernova production image-list | grep 'CoreOS (Alpha)'

      

    

    
      
        The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.

        The following command can be used to determine the image IDs for Beta:

        supernova production image-list | grep 'CoreOS (Beta)'

      

    

    
      
        The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.

        The following command can be used to determine the image IDs for Stable:

        supernova production image-list | grep 'CoreOS (Stable)'

      

    

  





Cloud-config

Container Linux allows you to configure machine parameters, launch systemd units on startup and more via cloud-config. Jump over to the docs to learn about the supported features [https://github.com/coreos/coreos-cloudinit/blob/master/Documentation/cloud-config]. Cloud-config is intended to bring up a cluster of machines into a minimal useful state and ideally shouldn’t be used to configure anything that isn’t standard across many hosts. Once a machine is created on Rackspace, the cloud-config can’t be modified.

You can provide cloud-config data via both Heat and Nova APIs. You cannot provide cloud-config via the Control Panel. If you launch machines via the UI, you will have to do all configuration manually.

The most common Rackspace cloud-config looks like:

#cloud-config

coreos:
  etcd2:
    # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
    # specify the initial size of your cluster with ?size=X
    discovery: https://discovery.etcd.io/<token>
    # multi-region and multi-cloud deployments need to use $public_ipv4
    advertise-client-urls: http://$private_ipv4:2379,http://$private_ipv4:4001
    initial-advertise-peer-urls: http://$private_ipv4:2380
    # listen on both the official ports and the legacy ports
    # legacy ports can be omitted if your application doesn't depend on them
    listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
    listen-peer-urls: http://$private_ipv4:2380
  units:
    - name: etcd2.service
      command: start
    - name: fleet.service
      command: start





The $private_ipv4 and $public_ipv4 substitution variables are fully supported in cloud-config on Rackspace.


Mount data disk

Certain server flavors have separate system and data disks. To utilize the data disks, they must be mounted with a .mount unit. Check to make sure the Where= parameter accurately reflects the location of the block device:

#cloud-config
coreos:
  units:
    - name: media-data.mount
      command: start
      content: |
        [Mount]
        What=/dev/xvde
        Where=/media/data
        Type=ext3





Mounting Cloud Block Storage can be done with a mount unit, but should not be included in cloud-config unless the disk is present on the first boot.

For more general information, check out mounting storage on Container Linux.






Launch with Nova

We’re going to install rackspace-novaclient, upload a keypair and boot the image id from above.


Install Supernova tool

The Supernova tool requires Python and pip, a Python package manger. If you don’t have pip installed, install it by running sudo easy_install pip. Now let’s use pip to install Supernova, a tool that lets you easily switch Rackspace regions. Be sure to install these in the order listed:

sudo pip install keyring
sudo pip install rackspace-novaclient
sudo pip install supernova








Store account information

Edit your config file (~/.supernova) to store your Rackspace username, API key (referenced as OS_PASSWORD) and some other settings. The OS_TENANT_NAME should be set to your Rackspace account ID, which can be found by clicking on your Rackspace username in the upper right-hand corner of the cloud control panel UI.

[production]
OS_AUTH_URL = https://identity.api.rackspacecloud.com/v2.0/
OS_USERNAME = username
OS_PASSWORD = fd62afe2-4686-469f-9849-ceaa792c55a6
OS_TENANT_NAME = 123456
OS_REGION_NAME = DFW
OS_AUTH_SYSTEM = rackspace





We’re ready to create a keypair then boot a server with it.




Create keypair

For this guide, I’m assuming you already have a public key you use for your Container Linux servers. Note that only RSA keypairs are supported. Load the public key to Rackspace:

supernova production keypair-add --pub-key ~/.ssh/coreos.pub coreos-key





Check you make sure the key is in your list by running supernova production keypair-list

+------------+-------------------------------------------------+
| Name       | Fingerprint                                     |
+------------+-------------------------------------------------+
| coreos-key | d0:6b:d8:3a:3e:6a:52:43:32:bc:01:ea:c2:0f:49:59 |
+------------+-------------------------------------------------+








Boot a server


  
    	Stable Channel

    	Beta Channel

    	Alpha Channel

  

  
    
      Boot a new Cloud Server with our new keypair and specify optional cloud-config data:

      supernova production boot --image <image-id> --flavor performance1-2 --key-name coreos-key --user-data ~/cloud_config.yml --config-drive true My_Container_Linux_Server

      Boot a new OnMetal Server with our new keypair and specify optional cloud-config data:

      supernova production boot --image <image-id> --flavor onmetal-compute1 --key-name coreos-key --user-data ~/cloud_config.yml --config-drive true My_Container_Linux_Server

    

    
      Boot a new Cloud Server with our new keypair and specify optional cloud-config data:

      supernova production boot --image <image-id> --flavor performance1-2 --key-name coreos-key --user-data ~/cloud_config.yml --config-drive true My_Container_Linux_Server

    

    
      Boot a new Cloud Server with our new keypair and specify optional cloud-config data:

      supernova production boot --image <image-id> --flavor performance1-2 --key-name coreos-key --user-data ~/cloud_config.yml --config-drive true My_Container_Linux_Server

    

  


You should now see the details of your new server in your terminal and it should also show up in the control panel:

+------------------------+--------------------------------------+
| Property               | Value                                |
+------------------------+--------------------------------------+
| status                 | BUILD                                |
| updated                | 2013-11-02T19:43:45Z                 |
| hostId                 |                                      |
| key_name               | coreos-key                           |
| image                  | CoreOS                               |
| OS-EXT-STS:task_state  | scheduling                           |
| OS-EXT-STS:vm_state    | building                             |
| flavor                 | 512MB Standard Instance              |
| id                     | 82dbe66d-0762-4cba-a286-8c1af8431e47 |
| user_id                | 3c55bca772ba4a4bb6a4eb5b25754738     |
| name                   | My_Container_Linux_Server            |
| adminPass              | mgNqEx7I9pQA                         |
| tenant_id              | 833111                               |
| created                | 2013-11-02T19:43:44Z                 |
| OS-DCF:diskConfig      | MANUAL                               |
| accessIPv4             |                                      |
| accessIPv6             |                                      |
| progress               | 0                                    |
| OS-EXT-STS:power_state | 0                                    |
| metadata               | {}                                   |
+------------------------+--------------------------------------+








Launching more servers

To launch more servers and have them join your cluster, simply provide the same cloud-config.






Launch via control panel

You can also launch servers with either the alpha and beta channel versions via the web-based Control Panel, although you can’t provide cloud-config via the UI. To do so:


	Log into your Rackspace Control Panel


	Click on ‘Servers’


	Click on ‘Create Server’


	Choose server name and region


	Click on ‘Linux’, then on ‘CoreOS’ and finally choose ‘(alpha)’ or ‘(beta)’ version


	Choose flavor and use ‘Advanced Options’ to select SSH Key – if available


	Click on ‘Create Server’







Using CoreOS Container Linux

Now that you have a machine booted it is time to play around. Check out the Container Linux Quickstart guide or dig into more specific topics [https://coreos.com/docs].







          

      

      

    

  

  
    
    Running CoreOS Container Linux on Vagrant
    

    
 
  

    
      
          
            
  
Running CoreOS Container Linux on Vagrant

Running Container Linux with Vagrant is one way to bring up a single machine or virtualize an entire cluster on your laptop. Since the true power of Container Linux can be seen with a cluster, we’re going to concentrate on that. Instructions for a single machine can be found towards the end of the guide.

You can direct questions to the IRC channel or mailing list [https://groups.google.com/forum/#%21forum/coreos-dev].


Install Vagrant and VirtualBox

Vagrant is a simple-to-use command line virtual machine manager. There are install packages available for Windows, Linux and OS X. Find the latest installer on the Vagrant downloads page [http://www.vagrantup.com/downloads.html]. Be sure to get version 1.6.3 or greater.

Vagrant can use either the free VirtualBox provider or the commercial VMware provider. Instructions for both are below. For the VirtualBox provider, version 4.3.10 or greater is required.




Clone Vagrant repo

Now that you have Vagrant installed you can bring up a Container Linux instance.

The following commands will clone a repository that contains the Container Linux Vagrantfile. This file tells Vagrant where it can find the latest disk image of Container Linux. Vagrant will download the image the first time you attempt to start the VM.

git clone --depth 1 https://github.com/coreos/coreos-vagrant.git
cd coreos-vagrant








Starting a cluster

To start our cluster, we need to provide some config parameters in cloud-config format via the user-data file and set the number of machines in the cluster in config.rb.


Cloud-config

Container Linux allows you to configure machine parameters, launch systemd units on start-up and more via cloud-config. Jump over to the docs to learn about the supported features [https://github.com/coreos/coreos-cloudinit/blob/master/Documentation/cloud-config]. You can provide cloud-config data to your Container Linux Vagrant VM by editing the user-data file inside of the cloned directory. A sample file user-data.sample exists as a base and must be renamed to user-data for it to be processed.

Our cluster will use an etcd discovery URL to bootstrap the cluster of machines and elect an initial etcd leader. Be sure to replace <token> with your own URL from https://discovery.etcd.io/new:

#cloud-config

coreos:
  etcd2:
    # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
    # specify the initial size of your cluster with ?size=X
    # WARNING: replace each time you 'vagrant destroy'
    discovery: https://discovery.etcd.io/<token>
    # multi-region and multi-cloud deployments need to use $public_ipv4
    advertise-client-urls: http://$private_ipv4:2379,http://$private_ipv4:4001
    initial-advertise-peer-urls: http://$private_ipv4:2380
    # listen on both the official ports and the legacy ports
    # legacy ports can be omitted if your application doesn't depend on them
    listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
    listen-peer-urls: http://$private_ipv4:2380
  fleet:
    public-ip: $public_ipv4
  flannel:
    interface: $public_ipv4
  units:
    - name: etcd2.service
      command: start
    - name: fleet.service
      command: start
    - name: flanneld.service
      drop-ins:
      - name: 50-network-config.conf
        content: |
          [Service]
          ExecStartPre=/usr/bin/etcdctl set /coreos.com/network/config '{ "Network": "10.1.0.0/16" }'
      # command: start
      # Uncomment the line above if you want to use flannel in your installation.





The $private_ipv4 and $public_ipv4 substitution variables are fully supported in cloud-config on Vagrant. They will map to the first statically defined private and public networks defined in the Vagrantfile.

There is no need to add an SSH key since Vagrant will automatically generate and use its own SSH key. Any keys added will be overwritten.

Your Vagrantfile should copy your cloud-config file to /var/lib/coreos-vagrant/vagrantfile-user-data. The provided Vagrantfile is already configured to do this. cloudinit reads vagrantfile-user-data on every boot and uses it to create the machine’s user-data file.

If you need to update your cloud-config later on, run vagrant reload --provision to reboot your VM and apply the new file.




Start up CoreOS Container Linux

The config.rb.sample file contains a few useful settings about your Vagrant environment and most importantly, how many machines you’d like in your cluster.

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates] with different schedules per channel. Select the channel you’d like to use for this cluster below. Read the release notes [https://coreos.com/releases] for specific features and bug fixes.


  
    	Stable Channel

    	Beta Channel

    	Alpha Channel

  

  
    
      The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

      Rename the file to config.rb and modify a few lines:

      config.rb

      # Size of the CoreOS cluster created by Vagrant
$num_instances=3

      # Official CoreOS channel from which updates should be downloaded
$update_channel='alpha'

    

    
      The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.

      Rename the file to config.rb then uncomment and modify:

      config.rb

      # Size of the CoreOS cluster created by Vagrant
$num_instances=3

      # Official CoreOS channel from which updates should be downloaded
$update_channel='beta'

    

    
      The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.

      Rename the file to config.rb then uncomment and modify:

      config.rb

      # Size of the CoreOS cluster created by Vagrant
$num_instances=3

      # Official CoreOS channel from which updates should be downloaded
$update_channel='stable'

    

  



Start machines using Vagrant’s default VirtualBox provider

Start the machine(s):

vagrant up





List the status of the running machines:

$ vagrant status
Current machine states:

core-01                   running (virtualbox)
core-02                   running (virtualbox)
core-03                   running (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run `vagrant status NAME`.





Connect to one of the machines:

vagrant ssh core-01 -- -A








Start machines using Vagrant’s VMware provider

If you have purchased the VMware Vagrant provider [http://www.vagrantup.com/vmware], run the following commands:

vagrant up --provider vmware_fusion
vagrant ssh core-01 -- -A












Single machine

To start a single machine, we need to provide some config parameters in cloud-config format via the user-data file.


Cloud-config

This cloud-config starts etcd and fleet when the machine is booted:

#cloud-config

coreos:
  etcd2:
    # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
    # specify the initial size of your cluster with ?size=X
    # WARNING: replace each time you 'vagrant destroy'
    discovery: https://discovery.etcd.io/<token>
    # multi-region and multi-cloud deployments need to use $public_ipv4
    advertise-client-urls: http://$private_ipv4:2379,http://$private_ipv4:4001
    initial-advertise-peer-urls: http://$private_ipv4:2380
    # listen on both the official ports and the legacy ports
    # legacy ports can be omitted if your application doesn't depend on them
    listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
    listen-peer-urls: http://$private_ipv4:2380
  fleet:
      public-ip: $public_ipv4
  units:
    - name: etcd2.service
      command: start
    - name: fleet.service
      command: start








Start up CoreOS Container Linux

The config.rb.sample file contains a few useful settings about your Vagrant environment. We’re going to set the Container Linux channel that we’d like the machine to track.


  
    	Stable Channel

    	Beta Channel

    	Alpha Channel

  

  
    
      The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

      Rename the file to config.rb then uncomment and modify:

      config.rb

      # Official CoreOS channel from which updates should be downloaded
$update_channel='alpha'

    

    
      The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.

      Rename the file to config.rb then uncomment and modify:

      config.rb

      # Official CoreOS channel from which updates should be downloaded
$update_channel='beta'

    

    
      The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.

      Rename the file to config.rb then uncomment and modify:

      config.rb

      # Official CoreOS channel from which updates should be downloaded
$update_channel='stable'

    

  



Start machine using Vagrant’s default VirtualBox provider

Start the machine:

vagrant up





Connect to the machine:

vagrant ssh core-01 -- -A








Start machine using Vagrant’s VMware provider

If you have purchased the VMware Vagrant provider [http://www.vagrantup.com/vmware], run the following commands:

vagrant up --provider vmware_fusion
vagrant ssh core-01 -- -A












Shared folder setup

Optionally, you can share a folder from your laptop into the virtual machine. This is useful for easily getting code and Dockerfiles into Container Linux.

config.vm.synced_folder ".", "/home/core/share", id: "core", :nfs => true,  :mount_options   => ['nolock,vers=3,udp']





After a ‘vagrant reload’ you will be prompted for your local machine password.




New box versions

Container Linux is a rolling release distribution and versions that are out of date will automatically update. If you want to start from the most up to date version you will need to make sure that you have the latest box file of Container Linux. You can do this using vagrant box update - or, simply remove the old box file and Vagrant will download the latest one the next time you vagrant up.

vagrant box remove coreos-alpha vmware_fusion
vagrant box remove coreos-alpha virtualbox





If you’d like to download the box separately, you can download the URL contained in the Vagrantfile and add it manually:

vagrant box add coreos-alpha <path-to-box-file>








Using CoreOS Container Linux

Now that you have a machine booted it is time to play around. Check out the Container Linux Quickstart guide, learn about Container Linux clustering with Vagrant [https://coreos.com/blog/coreos-clustering-with-vagrant/], or dig into more specific topics [https://coreos.com/docs].







          

      

      

    

  

  
    
    Running CoreOS Container Linux on VEXXHOST
    

    
 
  

    
      
          
            
  
Running CoreOS Container Linux on VEXXHOST

VEXXHOST is a Canadian OpenStack cloud computing provider based in Canada. In order to get started, you must have an active account on the VEXXHOST public cloud computing [https://vexxhost.com/] service.

The following instructions will walk you through setting up the nova tool with your appropriate credentials and launching your first cluster using the CLI tools.


Choosing a channel

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates] with different schedules per channel. You can disable this feature, although we don’t recommend it. Read the release notes [https://coreos.com/releases] for specific features and bug fixes.

The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.

The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.

The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

Container Linux releases are automatically built and deployed on the VEXXHOST cloud, therefore it is best to launch your clusters with the following naming pattern: CoreOS Channel Version. For example, the image name of the latest alpha release will be “CoreOS Alpha {{site.alpha-channel}}”.


Cloud-config

Container Linux allows you to configure machine parameters, launch systemd units on startup, and more via cloud-config [https://github.com/coreos/coreos-cloudinit/blob/master/Documentation/cloud-config]. We’re going to provide the cloud-config data via the user-data flag.

At the moment, you cannot supply the user-data using the CloudConsole control panel therefore you must use the CLI to deploy your cluster on the VEXXHOST cloud.

A sample common cloud-config file will look something like the following:

#cloud-config

coreos:
  etcd2:
    # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
    # specify the initial size of your cluster with ?size=X
    discovery: https://discovery.etcd.io/<token>
    # multi-region and multi-cloud deployments need to use $public_ipv4
    advertise-client-urls: http://$private_ipv4:2379,http://$private_ipv4:4001
    initial-advertise-peer-urls: http://$private_ipv4:2380
    # listen on both the official ports and the legacy ports
    # legacy ports can be omitted if your application doesn't depend on them
    listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
    listen-peer-urls: http://$private_ipv4:2380,http://$private_ipv4:7001
  units:
    - name: etcd2.service
      command: start
    - name: fleet.service
      command: start





The $private_ipv4 and $public_ipv4 substitution variables are fully supported in cloud-config on VEXXHOST.






Launch cluster

You will need to install python-novaclient which supplies the OpenStack CLI tools as well as a keypair to use in order to access your Container Linux cluster.


Install OpenStack CLI tools

If you don’t have pip installed, install it by running sudo easy_install pip. Now let’s use pip to install python-novaclient.

$ sudo pip install python-novaclient








Add API credentials

You will need to have your API credentials configured on the machine that you’re going to be launching your cluster from. The easiest way to do this is by logging into the CloudConsole control panel and clicking on “API Credentials”.

From there, you must create a file on your system with the contents of the openrc file provided. Once done, you will need to source that file in your shell prior to running any API commands. You can test that everything is running properly by running the following command:

$ source openrc
$ nova credentials








Create keypair

You can import an existing public key by using the nova keypair-add command, however for this guide, we will be creating a new keypair and storing the private key for it locally and use it to access our Container Linux cluster.

$ nova keypair-add coreos-key > coreos.pem








Create servers

You should now be ready to launch the servers which will create your Container Linux cluster using the nova CLI command.


  
    	Beta Channel

    	Alpha Channel

  

  
    
      The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

      nova boot --user-data cloud-config.yaml --image "CoreOS Alpha {{site.alpha-channel}}" --key-name coreos-key --flavor nb.2G --num-instances 3 coreos

    

    
      The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.

      nova boot --user-data cloud-config.yaml --image "CoreOS Beta {{site.beta-channel}}" --key-name coreos-key --flavor nb.2G --num-instances 3 coreos

    

  


Once that’s done, your cluster should be up and running. You can list the created servers and SSH into a server using your private key.

$ nova list
+--------------------------------------+-----------------+--------+------------+-------------+---------------------------------------+
| ID                                   | Name            | Status | Task State | Power State | Networks                              |
+--------------------------------------+-----------------+--------+------------+-------------+---------------------------------------+
| a1df1d98-622f-4f3b-adef-cb32f3e2a94d | coreos-a1df1d98 | ACTIVE | None       | Running     | public=162.253.x.x; private=10.20.x.x |
| db13c6a7-a474-40ff-906e-2447cbf89440 | coreos-db13c6a7 | ACTIVE | None       | Running     | public=162.253.x.x; private=10.20.x.x |
| f70b739d-9ad8-4b0b-bb74-4d715205ff0b | coreos-f70b739d | ACTIVE | None       | Running     | public=162.253.x.x; private=10.20.x.x |
+--------------------------------------+-----------------+--------+------------+-------------+---------------------------------------+
$ nova ssh --login core -i core.pem coreos-a1df1d98
CoreOS (alpha)
core@a1df1d98-622f-4f3b-adef-cb32f3e2a94d ~ $










Adding more machines

Adding new instances to the cluster is as easy as launching more with the same cloud-config. New instances will join the cluster assuming they can communicate with the others.




Multiple clusters

If you would like to create multiple clusters you’ll need to generate and use a new discovery token. Change the token value on the etcd discovery parameter in the cloud-config, and boot new instances.




Using CoreOS Container Linux

Now that you have instances booted it is time to play around. Check out the Container Linux Quickstart guide or dig into more specific topics [https://coreos.com/docs].







          

      

      

    

  

  
    
    Running CoreOS Container Linux on VirtualBox
    

    
 
  

    
      
          
            
  
Running CoreOS Container Linux on VirtualBox

These instructions will walk you through running Container Linux on Oracle VM VirtualBox.


Building the virtual disk

There is a script that simplifies building the VDI image. It downloads a bare-metal image, verifies it with GPG, and converts that image to a VDI image.

The script is located on GitHub [https://github.com/coreos/scripts/blob/master/contrib/create-coreos-vdi]. The running host must support VirtualBox tools.

As first step, you must download the script and make it executable.

wget https://raw.githubusercontent.com/coreos/scripts/master/contrib/create-coreos-vdi
chmod +x create-coreos-vdi





To run the script, you can specify a destination location and the Container Linux version.

./create-coreos-vdi -d /data/VirtualBox/Templates








Choose a channel

Choose a channel to base your disk image on. Specific versions of Container Linux can also be referenced by version number.


  
    	Stable Channel

    	Beta Channel

    	Alpha Channel

  

  
    
      The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

      Create a disk image from this channel by running:


./create-coreos-vdi -V alpha


    

    
      The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.

      Create a disk image from this channel by running:


./create-coreos-vdi -V beta


    

  
      The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.

      Create a disk image from this channel by running:


./create-coreos-vdi -V stable


    

  


After the script has finished successfully, the Container Linux image will be available at the specified destination location or at the current location. The file name will be something like:

coreos_production_stable.vdi








Creating a config-drive

Cloud-config can be specified by attaching a config-drive [https://github.com/coreos/coreos-cloudinit/blob/master/Documentation/config-drive] with the label config-2. This is commonly done through whatever interface allows for attaching CD-ROMs or new drives.

Note that the config-drive standard was originally an OpenStack feature, which is why you’ll see strings containing openstack. This filepath needs to be retained, although Container Linux supports config-drive on all platforms.

For more information on customization that can be done with cloud-config, head on over to the cloud-config guide [https://github.com/coreos/coreos-cloudinit/blob/master/Documentation/cloud-config].

You need a config-drive to configure at least one SSH key to access the virtual machine. If you are in hurry, you can create a basic config-drive with following steps:

wget https://raw.githubusercontent.com/coreos/scripts/master/contrib/create-basic-configdrive
chmod +x create-basic-configdrive
./create-basic-configdrive -H my_vm01 -S ~/.ssh/id_rsa.pub





An ISO file named my_vm01.iso will be created that will configure a virtual machine to accept your SSH key and set its name to my_vm01.




Deploying a new virtual machine on VirtualBox

Use the built image as the base image. Clone that image for each new virtual machine and set the desired size.

VBoxManage clonehd coreos_production_stable.vdi my_vm01.vdi
# Resize virtual disk to 10 GB
VBoxManage modifyhd my_vm01.vdi --resize 10240





At boot time, the Container Linux will detect that the volume size has changed and will resize the filesystem accordingly.

Open VirtualBox Manager and go to Machine > New. Type the desired machine name and choose ‘Linux’ as the type and ‘Linux 2.6 / 3.x (64 bit)’ as the version.

Next, choose the desired memory size; at least 1 GB for an optimal experience.

Then, choose ‘Use an existing virtual hard drive file’ and find the new cloned image.

Click on the ‘Create’ button to create the virtual machine.

Next, go to the settings from the created virtual machine. Then click on the Storage tab and load the created config-drive into the CD/DVD drive.

Click on the ‘OK’ button and the virtual machine will be ready to be started.




Logging in

Networking can take a bit of time to come up under VirtualBox, and the IP is needed in order to connect to it. Press enter a few times at the login prompt to see an IP address pop up. If you see VirtualBox NAT IP 10.0.2.15, go to the virtual machine settings and click the Network tab then Port Forwarding. Add the rule “Host Port: 2222; Guest Port 22” then connect using the command ssh core@localhost -p2222.

Now, login using your private SSH key.

ssh core@192.168.56.101








Using CoreOS Container Linux

Now that the machine has booted, it is time to play around. Check out the Container Linux Quickstart guide or dig into more specific topics [https://coreos.com/docs].







          

      

      

    

  

  
    
    Running CoreOS Container Linux on VMware
    

    
 
  

    
      
          
            
  
Running CoreOS Container Linux on VMware

These instructions walk through running Container Linux on VMware Fusion or ESXi. If you are familiar with another VMware product, you can use these instructions as a starting point.


Running the VM


Choosing a channel

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates] with different schedules per channel. You can disable this feature, although we don’t recommend it. Read the release notes [https://coreos.com/releases] for specific features and bug fixes.


  
    	Stable Channel

    	Beta Channel

    	Alpha Channel

  

  
    
      
        The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.

       

      curl -LO https://stable.release.core-os.net/amd64-usr/current/coreos_production_vmware_ova.ova

    

    
      
        The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

      

      curl -LO https://alpha.release.core-os.net/amd64-usr/current/coreos_production_vmware_ova.ova

    

    
      
        The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.

      

      curl -LO https://beta.release.core-os.net/amd64-usr/current/coreos_production_vmware_ova.ova

    

  





Booting with VMware ESXi

Use the vSphere Client to deploy the VM as follows:


	In the menu, click File > Deploy OVF Template...


	In the wizard, specify the location of the OVA file downloaded earlier


	Name your VM


	Choose “thin provision” for the disk format


	Choose your network settings


	Confirm the settings, then click “Finish”




Uncheck Power on after deployment in order to edit the VM before booting it the first time.

The last step uploads the files to the ESXi datastore and registers the new VM. You can now tweak VM settings, then power it on.

NB: These instructions were tested with an ESXi v5.5 host.




Booting with VMware Workstation 12 or VMware Fusion

Run VMware Workstation GUI:


	In the menu, click File > Open...


	In the wizard, specify the location of the OVA template downloaded earlier


	Name your VM, then click Import


	(Press Retry if VMware Workstation raises an “OVF specification” warning)


	Edit VM settings if necessary


	Modify the .vmx file to pass an Ignition config containing at least one valid SSH key


	Start your Container Linux VM




NB: These instructions were tested with a Fusion 8.1 host.




Installing via PXE or ISO image

Container Linux can also be installed by booting the virtual machine via PXE or the ISO image and then installing Container Linux to disk.






Container Linux Configs

Container Linux allows you to configure machine parameters, configure networking, launch systemd units on startup, and more via Container Linux Configs. These configs are then transpiled into Ignition configs and given to booting machines. Head over to the docs to learn about the supported features.

You can provide a raw Ignition config to Container Linux via VMware’s Guestinfo interface.

As an example, this config will start etcd:

etcd:
  # All options get passed as command line flags to etcd.
  # Any information inside curly braces comes from the machine at boot time.

  # vmware isn't currently supported for dynamic data, so we can't use {PRIVATE_IPV4}
  advertise_client_urls:       "http://10.0.0.10:2379"
  initial_advertise_peer_urls: "http://10.0.0.10:2380"
  # listen on both the official ports and the legacy ports
  # legacy ports can be omitted if your application doesn't depend on them
  listen_client_urls:          "http://0.0.0.0:2379"
  listen_peer_urls:            "http://10.0.0.10:2380"
  # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
  # specify the initial size of your cluster with ?size=X
  discovery:                   "https://discovery.etcd.io/<token>"








VMware Guestinfo interface


Setting Guestinfo options

The VMware guestinfo interface is a mechanism for VM configuration. Guestinfo properties are stored in the VMX file, or in the VMX representation in host memory. These properties are available to the VM at boot time. Within the VMX, the names of these properties are prefixed with guestinfo.. Guestinfo settings can be injected into VMs in one of four ways:


	Configure guestinfo in the OVF for deployment. Software like vcloud director [http://blogs.vmware.com/vsphere/2012/06/leveraging-vapp-vm-custom-properties-in-vcloud-director.html] manipulates OVF descriptors for guest configuration. For details, check out this VMware blog post about Self-Configuration and the OVF Environment [http://blogs.vmware.com/vapp/2009/07/selfconfiguration-and-the-ovf-environment.html].


	Set guestinfo keys and values from the Container Linux guest itself, by using a VMware Tools command like:




/usr/share/oem/bin/vmtoolsd --cmd "info-set guestinfo.<variable> <value>"






	Guestinfo keys and values can be set from a VMware Service Console, using the setguestinfo subcommand:




vmware-cmd /vmfs/volumes/[...]/<VMNAME>/<VMNAME>.vmx setguestinfo guestinfo.<property> <value>






	You can manually modify the VMX and reload it on the VMware Workstation, ESXi host, or in vCenter.




Guestinfo configuration set via the VMware API or with vmtoolsd from within the Container Linux guest itself are stored in VM process memory and are lost on VM shutdown or reboot.




Defining the Ignition config in Guestinfo

If the guestinfo.coreos.config.data property is set, Ignition will apply the referenced config on first boot.

The Ignition config is prepared for the guestinfo facility in one of two encoding types, specified in the guestinfo.coreos.config.data.encoding variable:

|    Encoding    |                        Command                        |
|:—————|:——————————————————|
| <elided> | sed -e 's/%/%%/g' -e 's/"/%22/g' /path/to/user_data |
| base64         | base64 -w0 /path/to/user_data && echo               |


Example

guestinfo.coreos.config.data = "ewogICJpZ25pdGlvbiI6IHsgInZlcnNpb24iOiAiMi4wLjAiIH0KfQo="
guestinfo.coreos.config.data.encoding = "base64"





This example will be decoded into:

{
  "ignition": { "version": "2.0.0" }
}












Logging in

Networking can take some time to start under VMware. Once it does, press enter a few times at the login prompt and you should see an IP address printed on the console:

[image: ../_images/vmware-ip.png]VMware IP Address

In this case the IP is 10.0.1.81.

Now you can login to the host at that IP using your SSH key, or the password set in your cloud-config:

ssh core@10.0.1.81





Alternatively, appending coreos.autologin to the kernel parameters at boot causes the console to accept the core user’s login with no password. This is handy for debugging.




Using CoreOS Container Linux

Now that you have a machine booted, it’s time to explore. Check out the Container Linux Quickstart guide, or dig into more specific topics [https://github.com/coreos/docs].







          

      

      

    

  

  
    
    Running CoreOS Container Linux on a Vultr VPS
    

    
 
  

    
      
          
            
  
Running CoreOS Container Linux on a Vultr VPS

These instructions will walk you through running a single Container Linux node. This guide assumes:


	You have an account at Vultr.com [https://www.vultr.com].


	You have a public + private key combination generated. Here’s a helpful guide if you need to generate these keys: How to set up SSH keys [https://help.github.com/articles/generating-ssh-keys].




The simplest option to boot up Container Linux is to select the “CoreOS Stable” operating system from Vultr’s default offerings. However, most deployments require a custom cloud-config, which can only be achieved in Vultr with an iPXE script. The remainder of this article describes this process.


Cloud-config

First, you’ll need to make a shell script containing your cloud-config available at a public URL:

cloud-config-bootstrap.sh

#!/bin/bash

cat > "cloud-config.yaml" <<EOF
#cloud-config

ssh_authorized_keys:
  - ssh-rsa ...
EOF

sudo coreos-install -d /dev/vda -c cloud-config.yaml
sudo reboot





Please be sure to check out Using Cloud-Config [https://github.com/coreos/coreos-cloudinit/blob/master/Documentation/cloud-config].

You must add to your ssh public key to your cloud-config’s ssh authorized keys [https://github.com/coreos/coreos-cloudinit/blob/master/Documentation/cloud-config.md#ssh_authorized_keys] so you’ll be able to log in.




Choosing a channel

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates] with different schedules per channel. You can disable this feature, although we don’t recommend it. Read the release notes [https://coreos.com/releases] for specific features and bug fixes.


  
    	Stable Channel

    	Beta Channel

    	Alpha Channel

  

  
    
      
        The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

      

      A sample script will look like this:
#!ipxe

# Location of your shell script.
set cloud-config-url http://example.com/cloud-config-bootstrap.sh

set base-url https://alpha.release.core-os.net/amd64-usr/current
kernel ${base-url}/coreos_production_pxe.vmlinuz cloud-config-url=${cloud-config-url}
initrd ${base-url}/coreos_production_pxe_image.cpio.gz
boot
</div>
<div class="tab-pane" id="beta">
  <div class="channel-info">
    <p>The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.</p>
  </div>
  <p>A sample script will look like this:</p>





#!ipxe

# Location of your shell script.
set cloud-config-url http://example.com/cloud-config-bootstrap.sh

set base-url https://beta.release.core-os.net/amd64-usr/current
kernel ${base-url}/coreos_production_pxe.vmlinuz cloud-config-url=${cloud-config-url}
initrd ${base-url}/coreos_production_pxe_image.cpio.gz
boot
</div>
<div class="tab-pane active" id="stable">
  <div class="channel-info">
    <p>The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.</p>
  </div>
  <p>A sample script will look like this:</p>





#!ipxe

# Location of your shell script.
set cloud-config-url http://example.com/cloud-config-bootstrap.sh

set base-url https://stable.release.core-os.net/amd64-usr/current
kernel ${base-url}/coreos_production_pxe.vmlinuz cloud-config-url=${cloud-config-url}
initrd ${base-url}/coreos_production_pxe_image.cpio.gz
boot
</div>





  


Go to My Servers > Startup Scripts > Add Startup Script, select type “PXE”, and input your script. Be sure to replace the cloud-config-url with that of the shell script you created above.

Additional reading can be found at Booting Container Linux with iPXE and Embedded scripts for iPXE [http://ipxe.org/embed].




Create the VPS

Create a new VPS (any server type and location of your choice), and then:


	For the “Operating System” select “Custom”


	Select “iPXE Custom Script” and the script you created above.


	Click “Place Order”




Once you receive the “Subscription Activated” email the VPS will be ready to use.




Accessing the VPS

You can now log in to Container Linux using the associated private key on your local computer. You may need to specify its location using -i LOCATION. If you need additional details on how to specify the location of your private key file see here [http://www.cyberciti.biz/faq/force-ssh-client-to-use-given-private-key-identity-file/].

SSH to the IP of your VPS, and specify the “core” user: ssh core@IP

$ ssh core@IP
The authenticity of host 'IP (2a02:1348:17c:423d:24:19ff:fef1:8f6)' can't be established.
RSA key fingerprint is 99:a5:13:60:07:5d:ac:eb:4b:f2:cb:c9:b2:ab:d7:21.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '[IP]' (ED25519) to the list of known hosts.
Enter passphrase for key '/home/user/.ssh/id_rsa':
CoreOS stable (557.2.0)
core@localhost ~ $








Using CoreOS Container Linux

Check out the Container Linux Quickstart guide or dig into more specific topics [https://coreos.com/docs].







          

      

      

    

  
  
    
    Booting CoreOS Container Linux via iPXE
    

    
 
  

    
      
          
            
  
Booting CoreOS Container Linux via iPXE

These instructions will walk you through booting Container Linux via iPXE on real or virtual hardware. By default, this will run Container Linux completely out of RAM. Container Linux can also be installed to disk.

A mininum of 2 GB of RAM is required to boot Container Linux via PXE.


Configuring iPXE

iPXE can be used on any platform that can boot an ISO image.
This includes many cloud providers and physical hardware.

To illustrate iPXE in action we will use qemu-kvm in this guide.


Setting up iPXE boot script

When configuring the Container Linux iPXE boot script there are a few kernel options that may be useful but all are optional.


	rootfstype=tmpfs: Use tmpfs for the writable root filesystem. This is the default behavior.


	rootfstype=btrfs: Use btrfs in RAM for the writable root filesystem. The filesystem will consume more RAM as it grows, up to a max of 50%. The limit isn’t currently configurable.


	root: Use a local filesystem for root instead of one of two in-ram options above. The filesystem must be formatted (perhaps using Ignition) but may be completely blank; it will be initialized on boot. The filesystem may be specified by any of the usual ways including device, label, or UUID; e.g: root=/dev/sda1, root=LABEL=ROOT or root=UUID=2c618316-d17a-4688-b43b-aa19d97ea821.


	sshkey: Add the given SSH public key to the core user’s authorized_keys file. Replace the example key below with your own (it is usually in ~/.ssh/id_rsa.pub)


	console: Enable kernel output and a login prompt on a given tty. The default, tty0, generally maps to VGA. Can be used multiple times, e.g. console=tty0 console=ttyS0


	coreos.autologin: Drop directly to a shell on a given console without prompting for a password. Useful for troubleshooting but use with caution. For any console that doesn’t normally get a login prompt by default be sure to combine with the console option, e.g. console=tty0 console=ttyS0 coreos.autologin=tty1 coreos.autologin=ttyS0. Without any argument it enables access on all consoles. Note that for the VGA console the login prompts are on virtual terminals (tty1, tty2, etc), not the VGA console itself (tty0).


	coreos.first_boot=1: Download an Ignition config and use it to provision your booted system. Ignition configs are generated from Container Linux Configs. See the config transpiler documentation for more information. If a local filesystem is used for the root partition, pass this parameter only on the first boot.


	coreos.config.url: Download the Ignition config from the specified URL. http, https, s3, and tftp schemes are supported.


	ip: Configure temporary static networking for initramfs. This parameter does not influence the final network configuration of the node and is mostly useful for first-boot provisioning of systems in DHCP-less environments. See Ignition documentation [https://coreos.com/ignition/docs/latest/network-configuration.html#using-static-ip-addresses-with-ignition] for the complete syntax.







Choose a Channel

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates] with different schedules per channel. You can disable this feature, although we don’t recommend it. Read the release notes [https://coreos.com/releases] for specific features and bug fixes.




Setting up the Boot Script


  
    	Stable Channel

    	Beta Channel

    	Alpha Channel

  

  
    
      The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

      iPXE downloads a boot script from a publicly available URL. You will need to host this URL somewhere public and replace the example SSH key with your own. You can also run a custom iPXE server.

      
#!ipxeset base-url http://alpha.release.core-os.net/amd64-usr/current
kernel ${base-url}/coreos_production_pxe.vmlinuz initrd=coreos_production_pxe_image.cpio.gz coreos.first_boot=1 coreos.config.url=https://example.com/pxe-config.ign
initrd ${base-url}/coreos_production_pxe_image.cpio.gz
boot
  
    
    Booting CoreOS Container Linux from an ISO
    

    
 
  

    
      
          
            
  
Booting CoreOS Container Linux from an ISO

The latest Container Linux ISOs can be downloaded from the image storage site:


  
    	Stable Channel

    	Beta Channel

    	Alpha Channel

  

  
    
      
        The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

      

      Download Alpha ISO
      Browse Storage Site
      


      All of the files necessary to verify the image can be found on the storage site.

    

    
      
        The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.

      

      Download Beta ISO
      Browse Storage Site
      


      All of the files necessary to verify the image can be found on the storage site.

    

    
      
        The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.

      

      Download Stable ISO
      Browse Storage Site
      


      All of the files necessary to verify the image can be found on the storage site.

    

  



Known limitations


	UEFI boot is not currently supported. Boot the system in BIOS compatibility mode.


	There is no straightforward way to provide an Ignition config.


	A mininum of 2 GB of RAM is required to boot Container Linux via ISO.







Install to disk

The most common use-case for this ISO is to install Container Linux to disk. You can find those instructions here.




No authentication on console

The ISO is configured to start a shell on the console without prompting for a password. This is convenient for installation and troubleshooting, but use caution.







          

      

      

    

  

  
    
    Running CoreOS Container Linux on libvirt
    

    
 
  

    
      
          
            
  
Running CoreOS Container Linux on libvirt

This guide explains how to run Container Linux with libvirt using the QEMU driver. The libvirt configuration
file can be used (for example) with virsh or virt-manager. The guide assumes
that you already have a running libvirt setup and virt-install tool. If you
don’t have that, other solutions are most likely easier.

You can direct questions to the IRC channel or mailing list [https://groups.google.com/forum/#%21forum/coreos-dev].


Download the CoreOS Container Linux image

In this guide, the example virtual machine we are creating is called container-linux1 and
all files are stored in /var/lib/libvirt/images/container-linux. This is not a requirement — feel free
to substitute that path if you use another one.


Choosing a channel

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates] with different schedules per channel. You can disable this feature, although we don’t recommend it. Read the release notes [https://coreos.com/releases] for specific features and bug fixes.


  
    	Stable Channel

    	Beta Channel

    	Alpha Channel

  

  
    
      The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

      We start by downloading the most recent disk image:

      
mkdir -p /var/lib/libvirt/images/container-linux
cd /var/lib/libvirt/images/container-linux
wget https://alpha.release.core-os.net/amd64-usr/current/coreos_production_qemu_image.img.bz2{,.sig}
gpg --verify coreos_production_qemu_image.img.bz2.sig
bunzip2 coreos_production_qemu_image.img.bz2

    

    
      The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.

      We start by downloading the most recent disk image:

      
mkdir -p /var/lib/libvirt/images/container-linux
cd /var/lib/libvirt/images/container-linux
wget https://beta.release.core-os.net/amd64-usr/current/coreos_production_qemu_image.img.bz2{,.sig}
gpg --verify coreos_production_qemu_image.img.bz2.sig
bunzip2 coreos_production_qemu_image.img.bz2

    

    
      The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.

      We start by downloading the most recent disk image:

      
mkdir -p /var/lib/libvirt/images/container-linux
cd /var/lib/libvirt/images/container-linux
wget https://stable.release.core-os.net/amd64-usr/current/coreos_production_qemu_image.img.bz2{,.sig}
gpg --verify coreos_production_qemu_image.img.bz2.sig
bunzip2 coreos_production_qemu_image.img.bz2

    

  







Virtual machine configuration

Now create a qcow2 image snapshot using the command below:

cd /var/lib/libvirt/images/container-linux
qemu-img create -f qcow2 -b coreos_production_qemu_image.img container-linux1.qcow2





This will create a container-linux1.qcow2 snapshot image. Any changes to container-linux1.qcow2 will not be reflected in coreos_production_qemu_image.img. Making any changes to a base image (coreos_production_qemu_image.img in our example) will corrupt its snapshots.


Ignition config

The preferred way to configure a Container Linux machine is via Ignition.
Unfortunately, libvirt does not have direct support for Ignition yet, so configuring it involves including qemu-specific xml.

This configuration can be done in the following steps:


Create the Ignition config

Typically you won’t write Ignition files yourself, rather you will typically use a tool like the config transpiler [https://coreos.com/os/docs/latest/overview-of-ct.html] to generate them.

However the Ignition file is created, it should be placed in a location which qemu can access. In this example, we’ll place it in /var/lib/libvirt/container-linux/container-linux1/provision.ign.

mkdir -p /var/lib/libvirt/container-linux/container-linux1/
echo '{"ignition":{"version":"2.0.0"}}' > /var/lib/libvirt/container-linux/container-linux1/provision.ign





If the host uses SELinux, allow the VM access to the config:

semanage fcontext -a -t virt_content_t "/var/lib/libvirt/container-linux/container-linux1"
restorecon -R "/var/lib/libvirt/container-linux/container-linux1"





A simple Container Linux config to add your ssh keys might look like the following:

storage:
  files:
  - path: /etc/hostname
    filesystem: "root"
    contents:
      inline: "container-linux1"

passwd:
  users:
    - name: core
      ssh_authorized_keys:
        - "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC0g+ZTxC7weoIJLUafOgrm+h..."








Creating the domain xml

Once the Ignition file exists on disk, the machine can be configured to use it.

Start by creating a libvirt domain XML [https://libvirt.org/formatdomaincaps.html] document:

virt-install --connect qemu:///system \
             --import \
             --name container-linux1 \
             --ram 1024 --vcpus 1 \
             --os-type=linux \
             --os-variant=virtio26 \
             --disk path=/var/lib/libvirt/images/container-linux/container-linux1.qcow2,format=qcow2,bus=virtio \
             --vnc --noautoconsole \
             --print-xml > /var/lib/libvirt/container-linux/container-linux1/domain.xml





Next, modify the domain xml to reference the qemu-specific configuration needed:

<?xml version="1.0"?>
<domain xmlns:qemu="http://libvirt.org/schemas/domain/qemu/1.0" type="kvm">
  ...
  <qemu:commandline>
    <qemu:arg value="-fw_cfg"/>
    <qemu:arg value="name=opt/com.coreos/config,file=/var/lib/libvirt/container-linux/container-linux1/provision.ign"/>
  </qemu:commandline>
</domain>





If you have the xmlstarlet utility installed, the above modification can be accomplished easily with the following:

domain=/var/lib/libvirt/container-linux/container-linux1/domain.xml
ignition_file=/var/lib/libvirt/container-linux/container-linux1/provision.ign

xmlstarlet ed -P -L -i "//domain" -t attr -n "xmlns:qemu" --value "http://libvirt.org/schemas/domain/qemu/1.0" "${domain}"
xmlstarlet ed -P -L -s "//domain" -t elem -n "qemu:commandline" "${domain}"
xmlstarlet ed -P -L -s "//domain/qemu:commandline" -t elem -n "qemu:arg" "${domain}"
xmlstarlet ed -P -L -s "(//domain/qemu:commandline/qemu:arg)[1]" -t attr -n "value" -v "-fw_cfg" "${domain}"
xmlstarlet ed -P -L -s "//domain/qemu:commandline" -t elem -n "qemu:arg" "${domain}"
xmlstarlet ed -P -L -s "(//domain/qemu:commandline/qemu:arg)[2]" -t attr -n "value" -v "name=opt/com.coreos/config,file=${ignition_file}" "${domain}"





Alternately, you can accomplish the same modification using sed:

domain=/var/lib/libvirt/container-linux/container-linux1/domain.xml
ignition_file=/var/lib/libvirt/container-linux/container-linux1/provision.ign

sed -i 's|type="kvm"|type="kvm" xmlns:qemu="http://libvirt.org/schemas/domain/qemu/1.0"|' "${domain}"
sed -i "/<\/devices>/a <qemu:commandline>\n  <qemu:arg value='-fw_cfg'/>\n  <qemu:arg value='name=opt/com.coreos/config,file=${ignition_file}'/>\n</qemu:commandline>" "${domain}"








Define and start the machine

Once the XML domain has been edited to include the Ignition file, it can be created and started using the virsh tool included with libvirt:

virsh define /var/lib/libvirt/container-linux/container-linux1/domain.xml
virsh start container-linux1 








SSH into the machine

By default, libvirt runs its own DHCP server which will provide an IP address to new instances. You can query it for what IP addresses have been assigned to machines:

$ virsh net-dhcp-leases default
Expiry Time          MAC address        Protocol  IP address                Hostname        Client ID or DUID
-------------------------------------------------------------------------------------------------------------------
 2017-08-09 16:32:52  52:54:00:13:12:45  ipv4      192.168.122.184/24        container-linux1 ff:32:39:f9:b5:00:02:00:00:ab:11:06:6a:55:ed:5d:0a:73:ee










Network configuration


Static IP

By default, Container Linux uses DHCP to get its network configuration. In this example the VM will be attached directly to the local network via a bridge on the host’s virbr0 and the local network. To configure a static address add a networkd unit [http://www.freedesktop.org/software/systemd/man/systemd.network.html] to the Container Linux config:

passwd:
  users:
  - name: core
    ssh_authorized_keys:
    - ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDGdByTgSVHq.......

storage:
  files:
  - path: /etc/hostname
    filesystem: "root"
    contents: 
      inline: container-linux1

networkd:
  units:
  - name: 10-ens3.network
    contents: |
      [Match]
      MACAddress=52:54:00:fe:b3:c0

      [Network]
      Address=192.168.122.2
      Gateway=192.168.122.1
      DNS=8.8.8.8








Using DHCP with a libvirt network

An alternative to statically configuring an IP at the host level is to do so at the libvirt level. If you’re using libvirt’s built in DHCP server and a recent libvirt version, it allows configuring what IP address will be provided to a given machine ahead of time.

This can be done using the net-update command. The following assumes you’re using the default libvirt network and have configured the MAC Address to 52:54:00:fe:b3:c0 through the --network flag on virt-install:

ip="192.168.122.2"
mac="52:54:00:fe:b3:c0"

virsh net-update --network "default" add-last ip-dhcp-host \
    --xml "<host mac='${mac}' ip='${ip}' />" \
    --live --config





By executing these commands before running virsh start, we can ensure the libvirt DHCP server will hand out a known IP.








Virtual machine startup

Now, start this libvirt instance with the RAM, vCPU, and networking configuration defined above:

ignition_file=/var/lib/libvirt/container-linux/container-linux1/provision.ign

domain=/var/lib/libvirt/container-linux/container-linux1/domain.xml
ip="192.168.122.2"
mac="52:54:00:fe:b3:c0"

mkdir -p "$(dirname "${domain}")"

virsh net-update --network "default" add-last ip-dhcp-host \
    --xml "<host mac='${mac}' ip='${ip}' />" \
    --live --config

virt-install --connect qemu:///system --import \
  --name container-linux1 \
  --ram 1024 --vcpus 1 \
  --os-type=linux \
  --os-variant=virtio26 \
  --disk path=/var/lib/libvirt/images/container-linux/container-linux1.qcow2,format=qcow2,bus=virtio \
  --network bridge=virbr0,mac=52:54:00:fe:b3:c0 \
  --vnc --noautoconsole \
  --print-xml > /var/lib/libvirt/container-linux/container-linux1/domain.xml

sed -ie 's|type="kvm"|type="kvm" xmlns:qemu="http://libvirt.org/schemas/domain/qemu/1.0"|' "${domain}"
sed -i "/<\/devices>/a <qemu:commandline>\n  <qemu:arg value='-fw_cfg'/>\n  <qemu:arg value='name=opt/com.coreos/config,file=${ignition_file}'/>\n</qemu:commandline>" "${domain}"

virsh define /var/lib/libvirt/container-linux/container-linux1/domain.xml
virsh start container-linux1





Once the virtual machine has started you can log in via SSH:

ssh core@192.168.122.2






SSH Config

To simplify this and avoid potential host key errors in the future add the following to ~/.ssh/config:

Host container-linux1
HostName 192.168.122.2
User core
StrictHostKeyChecking no
UserKnownHostsFile /dev/null





Now you can log in to the virtual machine with:

ssh container-linux1










Using CoreOS Container Linux

Now that you have a machine booted it is time to play around. Check out the Container Linux Quickstart guide or dig into more specific topics [https://coreos.com/docs].







          

      

      

    

  

  
    
    Booting CoreOS Container Linux via PXE
    

    
 
  

    
      
          
            
  
Booting CoreOS Container Linux via PXE

These instructions will walk you through booting Container Linux via PXE on real or virtual hardware. By default, this will run Container Linux completely out of RAM. Container Linux can also be installed to disk.

A mininum of 2 GB of RAM is required to boot Container Linux via PXE.


Configuring pxelinux

This guide assumes you already have a working PXE server using pxelinux [http://www.syslinux.org/wiki/index.php/PXELINUX]. If you need suggestions on how to set a server up, check out guides for Debian [http://www.debian-administration.org/articles/478], Fedora [http://docs.fedoraproject.org/en-US/Fedora/7/html/Installation_Guide/ap-pxe-server.html] or Ubuntu [https://help.ubuntu.com/community/DisklessUbuntuHowto].


Setting up pxelinux.cfg

When configuring the Container Linux pxelinux.cfg there are a few kernel options that may be useful but all are optional.


	rootfstype=tmpfs: Use tmpfs for the writable root filesystem. This is the default behavior.


	rootfstype=btrfs: Use btrfs in RAM for the writable root filesystem. The filesystem will consume more RAM as it grows, up to a max of 50%. The limit isn’t currently configurable.


	root: Use a local filesystem for root instead of one of two in-ram options above. The filesystem must be formatted (perhaps using Ignition) but may be completely blank; it will be initialized on boot. The filesystem may be specified by any of the usual ways including device, label, or UUID; e.g: root=/dev/sda1, root=LABEL=ROOT or root=UUID=2c618316-d17a-4688-b43b-aa19d97ea821.


	sshkey: Add the given SSH public key to the core user’s authorized_keys file. Replace the example key below with your own (it is usually in ~/.ssh/id_rsa.pub)


	console: Enable kernel output and a login prompt on a given tty. The default, tty0, generally maps to VGA. Can be used multiple times, e.g. console=tty0 console=ttyS0


	coreos.autologin: Drop directly to a shell on a given console without prompting for a password. Useful for troubleshooting but use with caution. For any console that doesn’t normally get a login prompt by default be sure to combine with the console option, e.g. console=tty0 console=ttyS0 coreos.autologin=tty1 coreos.autologin=ttyS0. Without any argument it enables access on all consoles. Note that for the VGA console the login prompts are on virtual terminals (tty1, tty2, etc), not the VGA console itself (tty0).


	coreos.first_boot=1: Download an Ignition config and use it to provision your booted system. Ignition configs are generated from Container Linux Configs. See the config transpiler documentation for more information. If a local filesystem is used for the root partition, pass this parameter only on the first boot.


	coreos.config.url: Download the Ignition config from the specified URL. http, https, s3, and tftp schemes are supported.


	ip: Configure temporary static networking for initramfs. This parameter does not influence the final network configuration of the node and is mostly useful for first-boot provisioning of systems in DHCP-less environments. See Ignition documentation [https://coreos.com/ignition/docs/latest/network-configuration.html#using-static-ip-addresses-with-ignition] for the complete syntax.




This is an example pxelinux.cfg file that assumes Container Linux is the only option. You should be able to copy this verbatim into /var/lib/tftpboot/pxelinux.cfg/default after providing an Ignition config URL:

default coreos
prompt 1
timeout 15

display boot.msg

label coreos
  menu default
  kernel coreos_production_pxe.vmlinuz
  initrd coreos_production_pxe_image.cpio.gz
  append coreos.first_boot=1 coreos.config.url=https://example.com/pxe-config.ign





Here’s a common config example which should be located at the URL from above:

systemd:
  units:
    - name: etcd2.service
      enable: true

passwd:
  users:
    - name: core
      ssh_authorized_keys:
        - ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDGdByTgSVHq...








Choose a channel

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates] with different schedules per channel. You can disable this feature, although we don’t recommend it. Read the release notes [https://coreos.com/releases] for specific features and bug fixes.

PXE booted machines cannot currently update themselves when new versions are released to a channel. To update to the latest version of Container Linux download/verify these files again and reboot.


  
    	Stable Channel

    	Beta Channel

    	Alpha Channel

  

  
    
      The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

      In the config above you can see that a Kernel image and a initramfs file is needed. Download these two files into your tftp root.

      The coreos_production_pxe.vmlinuz.sig and coreos_production_pxe_image.cpio.gz.sig files can be used to verify the downloaded files.

      
cd /var/lib/tftpboot
wget https://alpha.release.core-os.net/amd64-usr/current/coreos_production_pxe.vmlinuz
wget https://alpha.release.core-os.net/amd64-usr/current/coreos_production_pxe.vmlinuz.sig
wget https://alpha.release.core-os.net/amd64-usr/current/coreos_production_pxe_image.cpio.gz
wget https://alpha.release.core-os.net/amd64-usr/current/coreos_production_pxe_image.cpio.gz.sig
gpg --verify coreos_production_pxe.vmlinuz.sig
gpg --verify coreos_production_pxe_image.cpio.gz.sig
      

    

    
      The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.

      In the config above you can see that a Kernel image and a initramfs file is needed. Download these two files into your tftp root.

      The coreos_production_pxe.vmlinuz.sig and coreos_production_pxe_image.cpio.gz.sig files can be used to verify the downloaded files.

      
cd /var/lib/tftpboot
wget https://beta.release.core-os.net/amd64-usr/current/coreos_production_pxe.vmlinuz
wget https://beta.release.core-os.net/amd64-usr/current/coreos_production_pxe.vmlinuz.sig
wget https://beta.release.core-os.net/amd64-usr/current/coreos_production_pxe_image.cpio.gz
wget https://beta.release.core-os.net/amd64-usr/current/coreos_production_pxe_image.cpio.gz.sig
gpg --verify coreos_production_pxe.vmlinuz.sig
gpg --verify coreos_production_pxe_image.cpio.gz.sig
      

    

    
      The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.

      In the config above you can see that a Kernel image and a initramfs file is needed. Download these two files into your tftp root.

      The coreos_production_pxe.vmlinuz.sig and coreos_production_pxe_image.cpio.gz.sig files can be used to verify the downloaded files.

      
cd /var/lib/tftpboot
wget https://stable.release.core-os.net/amd64-usr/current/coreos_production_pxe.vmlinuz
wget https://stable.release.core-os.net/amd64-usr/current/coreos_production_pxe.vmlinuz.sig
wget https://stable.release.core-os.net/amd64-usr/current/coreos_production_pxe_image.cpio.gz
wget https://stable.release.core-os.net/amd64-usr/current/coreos_production_pxe_image.cpio.gz.sig
gpg --verify coreos_production_pxe.vmlinuz.sig
gpg --verify coreos_production_pxe_image.cpio.gz.sig
      

    

  







Booting the box

After setting up the PXE server as outlined above you can start the target machine in PXE boot mode. The machine should grab the image from the server and boot into Container Linux. If something goes wrong you can direct questions to the IRC channel or mailing list [https://groups.google.com/forum/#%21forum/coreos-user].

This is localhost.unknown_domain (Linux x86_64 3.10.10+) 19:53:36
SSH host key: 24:2e:f1:3f:5f:9c:63:e5:8c:17:47:32:f4:09:5d:78 (RSA)
SSH host key: ed:84:4d:05:e3:7d:e3:d0:b9:58:90:58:3b:99:3a:4c (DSA)
ens0: 10.0.2.15 fe80::5054:ff:fe12:3456
localhost login:








Logging in

The IP address for the machine should be printed out to the terminal for convenience. If it doesn’t show up immediately, press enter a few times and it should show up. Now you can simply SSH in using public key authentication:

ssh core@10.0.2.15








Update Process

Since our upgrade process requires a disk, this image does not have the option to update itself. Instead, the box simply needs to be rebooted and will be running the latest version, assuming that the image served by the PXE server is regularly updated.




Installation

Once booted it is possible to install Container Linux on a local disk or to just use local storage for the writable root filesystem while continuing to boot Container Linux itself via PXE.

If you plan on using Docker we recommend using a local ext4 filesystem with overlayfs, however, btrfs is also available to use if needed.

For example, to setup an ext4 root filesystem on /dev/sda:

storage:
  disks:
  - device: /dev/sda
    wipe_table: true
    partitions:
    - label: ROOT
  filesystems:
  - mount:
      device: /dev/disk/by-partlabel/ROOT
      format: ext4
      wipe_filesystem: true
      label: ROOT





And add root=/dev/sda1 or root=LABEL=ROOT to the kernel options as documented above.

Similarly, to setup a btrfs root filesystem on /dev/sda:

storage:
  disks:
  - device: /dev/sda
    wipe_table: true
    partitions:
    - label: ROOT
  filesystems:
  - mount:
      device: /dev/disk/by-partlabel/ROOT
      format: btrfs
      wipe_filesystem: true
      label: ROOT








Adding a Custom OEM

Similar to the OEM partition in Container Linux disk images, PXE images can be customized with an Ignition config [https://coreos.com/ignition/docs/latest] bundled in the initramfs. Simply create a ./usr/share/oem/ directory, add a config.ign file containing the Ignition config, and add the directory tree as an additional initramfs:

mkdir -p usr/share/oem
cp example.ign ./usr/share/oem/config.ign
find usr | cpio -o -H newc -O oem.cpio
gzip oem.cpio





Confirm the archive looks correct and has your config inside of it:

gzip --stdout --decompress oem.cpio.gz | cpio -it
./
usr
usr/share
usr/share/oem
usr/share/oem/config.ign





Add the oem.cpio.gz file to your PXE boot directory, then append it [http://www.syslinux.org/wiki/index.php?title=SYSLINUX#INITRD_initrd_file] to the initrd line in your pxelinux.cfg:

...
initrd coreos_production_pxe_image.cpio.gz,oem.cpio.gz
kernel coreos_production_pxe.vmlinuz coreos.first_boot=1
...








Using CoreOS Container Linux

Now that you have a machine booted it is time to play around. Check out the Container Linux Quickstart guide or dig into more specific topics [https://coreos.com/docs].







          

      

      

    

  

  
    
    Running CoreOS Container Linux on QEMU
    

    
 
  

    
      
          
            
  
Running CoreOS Container Linux on QEMU

These instructions will bring up a single Container Linux instance under QEMU, the small Swiss Army knife of virtual machine and CPU emulators. If you need to do more such as configuring networks [http://wiki.qemu.org/Documentation/Networking] differently refer to the QEMU Wiki [http://wiki.qemu.org/Manual] and User Documentation [http://qemu.weilnetz.de/qemu-doc.html].

You can direct questions to the IRC channel or mailing list [https://groups.google.com/forum/#%21forum/coreos-dev].


Install QEMU

In addition to Linux it can be run on Windows and OS X but works best on Linux. It should be available on just about any distro.


Debian or Ubuntu

Documentation for Debian [https://wiki.debian.org/QEMU] has more details but to get started all you need is:

sudo apt-get install qemu-system-x86 qemu-utils








Fedora or RedHat

The Fedora wiki has a quick howto [https://fedoraproject.org/wiki/How_to_use_qemu] but the basic install is easy:

sudo yum install qemu-system-x86 qemu-img








Arch

This is all you need to get started:

sudo pacman -S qemu





More details can be found on Arch’s QEMU wiki page [https://wiki.archlinux.org/index.php/Qemu].




Gentoo

As to be expected, Gentoo can be a little more complicated but all the required kernel options and USE flags are covered in the Gentoo Wiki [http://wiki.gentoo.org/wiki/QEMU]. Usually this should be sufficient:

echo app-emulation/qemu qemu_softmmu_targets_x86_64 virtfs xattr >> /etc/portage/package.use
emerge -av app-emulation/qemu










Startup CoreOS Container Linux

Once QEMU is installed you can download and start the latest Container Linux image.


Choosing a channel

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates] with different schedules per channel. You can disable this feature, although we don’t recommend it. Read the release notes [https://coreos.com/releases] for specific features and bug fixes.


  
    	Stable Channel

    	Beta Channel

    	Alpha Channel

  

  
    
      
        The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.

       

      There are two files you need: the disk image (provided in qcow2
      format) and the wrapper shell script to start QEMU.

      mkdir coreos; cd coreos
wget https://stable.release.core-os.net/amd64-usr/current/coreos_production_qemu.sh
wget https://stable.release.core-os.net/amd64-usr/current/coreos_production_qemu.sh.sig
wget https://stable.release.core-os.net/amd64-usr/current/coreos_production_qemu_image.img.bz2
wget https://stable.release.core-os.net/amd64-usr/current/coreos_production_qemu_image.img.bz2.sig
gpg --verify coreos_production_qemu.sh.sig
gpg --verify coreos_production_qemu_image.img.bz2.sig
bzip2 -d coreos_production_qemu_image.img.bz2
chmod +x coreos_production_qemu.sh

    

    
      
        The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

      

      There are two files you need: the disk image (provided in qcow2
      format) and the wrapper shell script to start QEMU.

      mkdir coreos; cd coreos
wget https://alpha.release.core-os.net/amd64-usr/current/coreos_production_qemu.sh
wget https://alpha.release.core-os.net/amd64-usr/current/coreos_production_qemu.sh.sig
wget https://alpha.release.core-os.net/amd64-usr/current/coreos_production_qemu_image.img.bz2
wget https://alpha.release.core-os.net/amd64-usr/current/coreos_production_qemu_image.img.bz2.sig
gpg --verify coreos_production_qemu.sh.sig
gpg --verify coreos_production_qemu_image.img.bz2.sig
bzip2 -d coreos_production_qemu_image.img.bz2
chmod +x coreos_production_qemu.sh

    

    
      
        The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.

      

      There are two files you need: the disk image (provided in qcow2
      format) and the wrapper shell script to start QEMU.

      mkdir coreos; cd coreos
wget https://beta.release.core-os.net/amd64-usr/current/coreos_production_qemu.sh
wget https://beta.release.core-os.net/amd64-usr/current/coreos_production_qemu.sh.sig
wget https://beta.release.core-os.net/amd64-usr/current/coreos_production_qemu_image.img.bz2
wget https://beta.release.core-os.net/amd64-usr/current/coreos_production_qemu_image.img.bz2.sig
gpg --verify coreos_production_qemu.sh.sig
gpg --verify coreos_production_qemu_image.img.bz2.sig
bzip2 -d coreos_production_qemu_image.img.bz2
chmod +x coreos_production_qemu.sh

    

  


Starting is as simple as:

./coreos_production_qemu.sh -nographic








SSH keys

In order to log in to the virtual machine you will need to use ssh keys. If you don’t already have a ssh key pair you can generate one simply by running the command ssh-keygen. The wrapper script will automatically look for public keys in ssh-agent if available and at the default locations ~/.ssh/id_dsa.pub or ~/.ssh/id_rsa.pub. If you need to provide an alternate location use the -a option:

./coreos_production_qemu.sh -a ~/.ssh/authorized_keys -- -nographic





Note: Options such as -a for the wrapper script must be specified before any options for QEMU. To make the separation between the two explicit you can use -- but that isn’t required. See ./coreos_production_qemu.sh -h for details.

Once the virtual machine has started you can log in via SSH:

ssh -l core -p 2222 localhost








SSH config

To simplify this and avoid potential host key errors in the future add the following to ~/.ssh/config:

Host coreos
HostName localhost
Port 2222
User core
StrictHostKeyChecking no
UserKnownHostsFile /dev/null





Now you can log in to the virtual machine with:

ssh coreos








Container Linux Configs

Container Linux allows you to configure machine parameters, configure networking, launch systemd units on startup, and more via Container Linux Configs. These configs are then transpiled into Ignition configs and given to booting machines. Head over to the docs to learn about the supported features. An Ignition config can be passed to the virtual machine using the QEMU Firmware Configuration Device. The wrapper script provides a method for doing so:

./coreos_production_qemu.sh -i config.ign -- -nographic





This will pass the contents of config.ign through to Ignition, which runs in the virtual machine.






Using CoreOS Container Linux

Now that you have a machine booted it is time to play around. Check out the Container Linux Quickstart guide or dig into more specific topics [https://coreos.com/docs].







          

      

      

    

  

  
    
    Working with btrfs and common troubleshooting
    

    
 
  

    
      
          
            
  
Working with btrfs and common troubleshooting

btrfs is a copy-on-write filesystem with full support in the upstream Linux kernel and several desirable features. In the past, Container Linux shipped with a btrfs root filesystem to support Docker filesystem requirements at the time. As of version 561.0.0, Container Linux ships with ext4 as the default root filesystem by default while still supporting Docker. Btrfs is still supported and works with the latest Container Linux releases and Docker, but we recommend using ext4.

btrfs was marked as experimental for a long time, but it’s now fully production-ready and supported by a number of Linux distributions.

Notable Features of btrfs:


	Ability to add/remove block devices without interruption


	Ability to balance the filesystem without interruption


	RAID 0, RAID 1, RAID 5, RAID 6 and RAID 10


	Snapshots and file cloning




This guide won’t cover these topics — it’s mostly focused on troubleshooting.

For a more complete troubleshooting experience, let’s explore how btrfs works under the hood.

btrfs stores data in chunks across all of the block devices on the system. The total storage across these devices is shown in the standard output of df -h.

Raw data and filesystem metadata are stored in one or many chunks, typically ~1GiB in size. When RAID is configured, these chunks are replicated instead of individual files.

A copy-on-write filesystem maintains many changes of a single file, which is helpful for snapshotting and other advanced features, but can lead to fragmentation with some workloads.


No space left on device

When the filesystem is out of chunks to write data into, No space left on device will be reported. This will prevent journal files from being recorded, containers from starting and so on.

The common reaction to this error is to run df -h and you’ll see that there is still some free space. That command isn’t measuring the btrfs primitives (chunks, metadata, etc), which is what really matters.

Running sudo btrfs fi show will give you the btrfs view of how much free space you have. When starting/stopping many Docker containers or doing a large amount of random writes, chunks will become duplicated in an inefficient manner over time.

Re-balancing the filesystem (official btrfs docs [https://btrfs.wiki.kernel.org/index.php/Balance_Filters]) will relocate data from empty or near-empty chunks to free up space. This operation can be done without downtime.

First, let’s see how much free space we have:

$ sudo btrfs fi show
Label: 'ROOT'  uuid: 82a40c46-557e-4848-ad4d-10c6e36ed5ad
  Total devices 1 FS bytes used 13.44GiB
  devid    1 size 32.68GiB used 32.68GiB path /dev/xvda9

Btrfs v3.14_pre20140414





The answer: not a lot. We can re-balance to fix that.

The re-balance command can be configured to only relocate data in chunks up to a certain percentage used. This will prevent you from moving around a lot of data without a lot of benefit. If your disk is completely full, you may need to delete a few containers to create space for the re-balance operation to work with.

Let’s try to relocate chunks with less than 5% of usage:

$ sudo btrfs fi balance start -dusage=5 /
Done, had to relocate 5 out of 45 chunks
$ sudo btrfs fi show
Label: 'ROOT'  uuid: 82a40c46-557e-4848-ad4d-10c6e36ed5ad
  Total devices 1 FS bytes used 13.39GiB
  devid    1 size 32.68GiB used 28.93GiB path /dev/xvda9

Btrfs v3.14_pre20140414





The operation took about a minute on a cloud server and gained us 4GiB of space on the filesystem. It’s up to you to find out what percentage works best for your workload, the speed of your disks, etc.

If your balance operation is taking a long time, you can open a new shell and find the status:

$ sudo btrfs balance status /
Balance on '/' is running
0 out of about 1 chunks balanced (1 considered), 100% left








Adding a new physical disk

New physical disks can be added to an existing btrfs filesystem. The first step is to have the new block device mounted on the machine. Afterwards, let btrfs know about the new device and re-balance the file system. The key step here is re-balancing, which will move the data and metadata across both block devices. Expect this process to take some time:

$ btrfs device add /dev/sdc /
$ btrfs filesystem balance /








Disable copy-on-write

Copy-On-write isn’t ideal for workloads that create or modify many small files, such as databases. Without disabling COW, you can heavily fragment the file system as explained above.

The best strategy for successfully running a database in a container is to disable COW on directory/volume that is mounted into the container.

The COW setting is stored as a file attribute and is modified with a utility called chattr. To disable COW for a MySQL container’s volume, run:

$ sudo mkdir /var/lib/mysql
$ sudo chattr -R +C /var/lib/mysql





The directory /var/lib/mysql is now ready to be used by a Docker container without COW. Let’s break down the command:

-R indicates that want to recursively change the file attribute
+C means we want to set the NOCOW attribute on the file/directory

To verify, we can run:

$ sudo lsattr /var/lib/
---------------- /var/lib/portage
---------------- /var/lib/gentoo
---------------- /var/lib/iptables
---------------- /var/lib/ip6tables
---------------- /var/lib/arpd
---------------- /var/lib/ipset
---------------- /var/lib/dbus
---------------- /var/lib/systemd
---------------- /var/lib/polkit-1
---------------- /var/lib/dhcpcd
---------------- /var/lib/ntp
---------------- /var/lib/nfs
---------------- /var/lib/etcd
---------------- /var/lib/docker
---------------- /var/lib/update_engine
---------------C /var/lib/mysql






Disable via a unit file

Setting the file attributes can be done via a systemd unit using two ExecStartPre commands:

ExecStartPre=/usr/bin/mkdir -p /var/lib/mysql
ExecStartPre=/usr/bin/chattr -R +C /var/lib/mysql













          

      

      

    

  

  
    
    CoreOS Container Linux cluster architectures
    

    
 
  

    
      
          
            
  
CoreOS Container Linux cluster architectures


Overview

Depending on the size and expected use of your Container Linux cluster, you will have different architectural requirements. A few of the common cluster architectures, as well as their strengths and weaknesses, are described below.

Most of these scenarios dedicate a few machines, bare metal or virtual, to running central cluster services. These may include etcd and the distributed controllers for applications like Kubernetes, Mesos, and OpenStack. Isolating these services onto a few known machines helps to ensure they are distributed across cabinets or availability zones. It also helps in setting up static networking to allow for easy bootstrapping. This architecture helps to resolve concerns about relying on a discovery service.




Docker dev environment on laptop

[image: Laptop Environment Diagram]
Laptop development environment with Container Linux VM
| Cost | Great For          | Set Up Time | Production |
|——|——————–|————-|————|
| Low  | Laptop development | Minutes     | No         |

If you’re developing locally but plan to run containers in production, it’s best practice to mirror that environment locally. Run Docker commands on your laptop that control a Container Linux VM in VMware Fusion or Virtual box to mirror your container production environment locally.


Configuring your laptop

Start a single Container Linux VM with the Docker remote socket enabled in the Container Linux Config (CL Config). Here’s what the CL Config looks like:

systemd:
  units:
    - name: docker-tcp.socket
      enable: yes
      mask: false
      contents: |
        [Unit]
        Description=Docker Socket for the API

        [Socket]
        ListenStream=2375
        BindIPv6Only=both
        Service=docker.service

        [Install]
        WantedBy=sockets.target
    - name: enable-docker-tcp.service
      enable: true
      contents: |
        [Unit]
        Description=Enable the Docker Socket for the API

        [Service]
        Type=oneshot
        ExecStart=/usr/bin/systemctl enable docker-tcp.socket





This file is used to provision your local CoreOS machine on its first boot. This sets up and enables the Docker API, which is how you can use Docker on your laptop. The Docker CLI manages containers running within the VM, not on your personal operating system.

Using the CL Config Transpiler, or ct, (download [https://github.com/coreos/container-linux-config-transpiler/releases]) convert the above yaml into an Ignition [https://coreos.com/ignition/docs/latest/getting-started.html]. Alternatively, copy the contents of the Igntion tab in the above example. Once you have the Ignition configuration file, pass it to your provider (complete list of supported Ignition platforms [https://coreos.com/ignition/docs/latest/supported-platforms.html]).

Once the local VM is running, tell your Docker binary on your personal operating system to use the remote port by exporting an environment variable and start running Docker commands. Run these commands in a terminal on your local operating system (MacOS or Linux), not in the Container Linux virtual machine:

$ export DOCKER_HOST=tcp://localhost:2375
$ docker ps





This avoids discrepancies between your development and production environments.




Related local installation tools

There are several different options for testing Container Linux locally:


	Container Linux on QEMU [https://coreos.com/os/docs/latest/booting-with-qemu.html] is a feature rich way of running Container Linux locally, provisioned by Ignition configs like the one shown above.


	Minikube [https://github.com/kubernetes/minikube] is used for local Kubernetes development. This does not use Container Linux but is very fast to setup and is the easiest way to test-drive use Kubernetes.









Small cluster

[image: Small Container Linux Cluster Diagram]
Small Container Linux cluster running etcd on all machines
| Cost | Great For                                  | Set Up Time | Production |
|——|——————————————–|————-|————|
| Low  | Small clusters, trying out Container Linux | Minutes     | Yes        |

For small clusters, between 3-9 machines, running etcd on all of the machines allows for high availability without paying for extra machines that just run etcd.

Getting started is easy — a single CL Config can be used to provision all machines in your environment.

Once you have a small cluster up and running, you can install a Kubernetes on the cluster. You can do this easily using the open source Tectonic installer [https://github.com/coreos/tectonic-installer#tectonic-installer].


Configuring the machines

For more information on getting started with this architecture, see the CoreOS documentation on supported platforms [https://coreos.com/os/docs/latest#running-coreos]. These include Amazon EC2 [https://coreos.com/os/docs/latest/booting-on-ec2.html], Openstack [https://coreos.com/os/docs/latest/booting-on-openstack.html], Azure [https://coreos.com/os/docs/latest/booting-on-azure.html], Google Compute Platform [https://coreos.com/os/docs/latest/booting-on-google-compute-engine.html], bare metal iPXE [https://coreos.com/matchbox/], Digital Ocean [https://coreos.com/os/docs/latest/booting-on-digitalocean.html], and many more community supported platforms.

Boot the desired number of machines with the same CL Config and discovery token. The CL Config specifies which services will be started on each machine.






Easy development/testing cluster

[image: Container Linux cluster optimized for development and testing]
Container Linux cluster optimized for development and testing
| Cost | Great For | Set Up Time | Production |
|——|———–|————-|————|
| Low | Development/Testing | Minutes | No |

When getting started with Container Linux, it’s common to frequently boot, reboot, and destroy machines while tweaking your configuration. To avoid the need to generate new discovery URLs and bootstrap etcd, start a single etcd node, and build your cluster around it.

You can now boot as many machines as you’d like as test workers that read from the etcd node. All the features of Locksmith and etcdctl will continue to work properly but will connect to the etcd node instead of using a local etcd instance. Since etcd isn’t running on all of the machines you’ll gain a little bit of extra CPU and RAM to play with.

You can easily provision the remaining (non-etcd) nodes with Kubernetes using the open source Tectonic installer [https://github.com/coreos/tectonic-installer#tectonic-installer] to start running containerized app with your cluster.

Once this environment is set up, it’s ready to be tested. Destroy a machine, and watch Kubernetes reschedule the units, max out the CPU, and rebuild your setup automatically.


Configuration for etcd role

Since we’re only using a single etcd node, there is no need to include a discovery token. There isn’t any high availability for etcd in this configuration, but that’s assumed to be OK for development and testing. Boot this machine first so you can configure the rest with its IP address, which is specified with the networkd unit.

The networkd unit is typically used for bare metal installations that require static networking. See your provider’s documentation for specific examples.

Here’s the CL Config for the etcd machine:

etcd:
  version: 3.1.5
  name: "etcdserver"
  initial_cluster: "etcdserver=http://10.0.0.101:2380"
  initial_advertise_peer_urls: "http://10.0.0.101:2380"
  advertise_client_urls: "http://10.0.0.101:2379"
  listen_client_urls: "http://0.0.0.0:2379,http://0.0.0.0:4001"
  listen_peer_urls: "http://0.0.0.0:2380"
systemd:
  units:
    - name: etcd-member.service
      enable: true
      dropins:
        - name: conf1.conf
          contents: |
            [Service]
            Environment="ETCD_NAME=etcdserver"
networkd:
  units:
    - name: 00-eth0.network
      contents: |
        [Match]
        Name=eth0

        [Network]
        DNS=1.2.3.4
        Address=10.0.0.101/24
        Gateway=10.0.0.1








Configuration for worker role

This architecture allows you to boot any number of workers, from a single unit to a large cluster designed for load testing. The notable configuration difference for this role is specifying that applications like Kubernetes should use our etcd proxy instead of starting etcd server locally.

You can easily provision the remaining (non-etcd) nodes with Kubernetes using the open source Tectonic installer [https://github.com/coreos/tectonic-installer#tectonic-installer] to start running containerized app with your cluster.






Production cluster with central services

Tectonic from CoreOS [https://coreos.com/tectonic] simplifies install and ongoing management of your Kubernetes cluster. Run up to 10 Container Linux nodes for free. Check it out [https://coreos.com/tectonic].

[image: Container Linux cluster optimized for production environments]
Container Linux cluster separated into central services and workers.
| Cost | Great For | Set Up Time | Production |
|——|———–|————-|————|
| High | Large bare-metal installations | Hours | Yes |

For large clusters, it’s recommended to set aside 3-5 machines to run central services. Once those are set up, you can boot as many workers as you wish. Each of the workers will use your distributed etcd cluster on the central machines via local etcd proxies. This is explained in greater depth below.


Configuration for central services role

Our central services machines will run services like etcd and Kubernetes controllers that support the rest of the cluster. etcd is configured with static networking and a peers list.

Container Linux Support [https://coreos.com/products/managed-linux] customers can also specify a CoreUpdate [https://coreos.com/products/coreupdate] group ID which allows you to subscribe these machines to a different update channel, controlling updates separately from the worker machines.

Here’s an example CL Config for one of the central service machines. Be sure to generate a new discovery token with the initial size of your cluster:

etcd:
  version: 3.0.15
  # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
  # specify the initial size of your cluster with ?size=X
  discovery: https://discovery.etcd.io/<token>
  # multi-region and multi-cloud deployments must use $public_ipv4
  advertise_client_urls: http://10.0.0.101:2379
  initial_advertise_peer_urls: http://10.0.0.101:2380
  listen_client_urls: http://0.0.0.0:2379
  listen_peer_urls: http://10.0.0.101:2380
update:
  # CoreUpdate group ID for "Production Central Services"
  # Use "stable", "beta", or "alpha" for non-subscribers.
  group: 9e98ecae-4623-48c1-9679-423549c44da6
  server: https://customer.update.core-os.net/v1/update/
systemd:
  units:
    - name: etcd-member.service
      enable: true
networkd:
  units:
    - name: 00-eth0.network
      contents: |
        [Match]
        Name=eth0

        [Network]
        DNS=1.2.3.4
        Address=10.0.0.101/24
        Gateway=10.0.0.1








Configuration for worker role

You can easily provision the remaining (non-etcd) nodes with Kubernetes using the open source Tectonic installer [https://github.com/coreos/tectonic-installer#tectonic-installer] to start running containerized app with your cluster.

The worker roles will use DHCP and should be easy to add capacity or autoscaling.

Managed Linux [https://coreos.com/products/managed-linux] customers can also specify a CoreUpdate [https://coreos.com/products/coreupdate] group ID to use a different channel and control updates separately from the central machines.

Here’s an example CL Config for a worker which specifies an update channel:

update:
  # CoreUpdate group ID for "Production Central Services"
  # Use "stable", "beta", or "alpha" for non-subscribers.
  group: 9e98ecae-4623-48c1-9679-423549c44da6
  # Non-subscribers should use server: "https://public.update.core-os.net/v1/update/"
  server: https://customer.update.core-os.net/v1/update/













          

      

      

    

  

  
    
    CoreOS Container Linux cluster discovery
    

    
 
  

    
      
          
            
  
CoreOS Container Linux cluster discovery


Overview

Container Linux uses etcd, a service running on each machine, to handle coordination between software running on the cluster. For a group of Container Linux machines to form a cluster, their etcd instances need to be connected.

A discovery service, https://discovery.etcd.io, is provided as a free service to help connect etcd instances together by storing a list of peer addresses, metadata and the initial size of the cluster under a unique address, known as the discovery URL. You can generate them very easily:

$ curl -w "\n" 'https://discovery.etcd.io/new?size=3'
https://discovery.etcd.io/6a28e078895c5ec737174db2419bb2f3





The discovery URL can be provided to each Container Linux machine via Container Linux Configs. The rest of this guide will explain what’s happening behind the scenes, but if you’re trying to get clustered as quickly as possible, all you need to do is provide a fresh, unique discovery token in your config.

Boot each one of the machines with identical Container Linux Config and they should be automatically clustered:

etcd:
  # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
  # specify the initial size of your cluster with ?size=X
  discovery: https://discovery.etcd.io/<token>
  # multi_region and multi_cloud deployments need to use {PUBLIC_IPV4}
  advertise_client_urls: http://{PRIVATE_IPV4}:2379,http://{PRIVATE_IPV4}:4001
  initial_advertise_peer_urls: http://{PRIVATE_IPV4}:2380
  # listen on both the official ports and the legacy ports
  # legacy ports can be omitted if your application doesn't depend on them
  listen_client_urls: http://0.0.0.0:2379,http://0.0.0.0:4001
  listen_peer_urls: http://{PRIVATE_IPV4}:2380





Specific documentation are provided for each platform’s guide. Not all providers support the {PRIVATE_IPV4} variable substitution.




New clusters

Starting a Container Linux cluster requires one of the new machines to become the first leader of the cluster. The initial leader is stored as metadata with the discovery URL in order to inform the other members of the new cluster. Let’s walk through a timeline a new three-machine Container Linux cluster discovering each other:


	All three machines are booted via a cloud-provider with the same config in the user-data.


	Machine 1 starts up first. It requests information about the cluster from the discovery token and submits its -initial-advertise-peer-urls address 10.10.10.1.


	No state is recorded into the discovery URL metadata, so machine 1 becomes the leader and records the state as started.


	Machine 2 boots and submits its -initial-advertise-peer-urls address 10.10.10.2. It also reads back the list of existing peers (only 10.10.10.1) and attempts to connect to the address listed.


	Machine 2 connects to Machine 1 and is now part of the cluster as a follower.


	Machine 3 boots and submits its -initial-advertise-peer-urls address 10.10.10.3. It reads back the list of peers (10.10.10.1 and 10.10.10.2) and selects one of the addresses to try first. When it connects to a machine in the cluster, the machine is given a full list of the existing other members of the cluster.


	The cluster is now bootstrapped with an initial leader and two followers.




There are a few interesting things happening during this process.

First, each machine is configured with the same discovery URL and etcd figured out what to do. This allows you to load the same Container Linux Config into an auto-scaling group and it will work whether it is the first or 30th machine in the group.

Second, machine 3 only needed to use one of the addresses stored in the discovery URL to connect to the cluster. Since etcd uses the Raft consensus algorithm, existing machines in the cluster already maintain a list of healthy members in order for the algorithm to function properly. This list is given to the new machine and it starts normal operations with each of the other cluster members.

Third, if you specified ?size=3 upon discovery URL creation, any other machines that join the cluster in the future will automatically start as etcd proxies.




Common problems with cluster discovery


Existing clusters

Do not use the public discovery service to reconfigure a running etcd cluster. [https://github.com/coreos/etcd/blob/master/Documentation/op-guide/runtime-reconf-design.md#do-not-use-public-discovery-service-for-runtime-reconfiguration] The public discovery service is a convenience for bootstrapping new clusters, especially on cloud providers with dynamic IP assignment, but is not designed for the later case when the cluster is running and member IPs are known.

To promote proxy members or join new members into an existing etcd cluster, configure static discovery and add members. The etcd cluster reconfiguration guide details the steps for performing this reconfiguration on Container Linux systems that were originally deployed with public discovery. The more general etcd cluster reconfiguration document [https://github.com/coreos/etcd/blob/master/Documentation/op-guide/runtime-configuration] explains the operations for removing and adding cluster members in a cluster already configured with static discovery.




Stale tokens

A common problem with cluster discovery is attempting to boot a new cluster with a stale discovery URL. As explained above, the initial leader election is recorded into the URL, which indicates that the new etcd instance should be joining an existing cluster.

If you provide a stale discovery URL, the new machines will attempt to connect to each of the old peer addresses, which will fail since they don’t exist, and the bootstrapping process will fail.

If you’re thinking, why can’t the new machines just form a new cluster if they’re all down. There’s a really great reason for this — if an etcd peer was in a network partition, it would look exactly like the “full-down” situation and starting a new cluster would form a split-brain. Since etcd will never be able to determine whether a token has been reused or not, it must assume the worst and abort the cluster discovery.

If you’re running into problems with your discovery URL, there are a few sources of information that can help you see what’s going on. First, you can open the URL in a browser to see what information etcd is using to bootstrap itself:

{
  action: "get",
  node: {
    key: "/_etcd/registry/506f6c1bc729377252232a0121247119",
    dir: true,
    nodes: [
      {
        key: "/_etcd/registry/506f6c1bc729377252232a0121247119/0d79b4791be9688332cc05367366551e",
        value: "http://10.183.202.105:7001",
        expiration: "2014-08-17T16:21:37.426001686Z",
        ttl: 576008,
        modifiedIndex: 72783864,
        createdIndex: 72783864
      },
      {
        key: "/_etcd/registry/506f6c1bc729377252232a0121247119/c72c63ffce6680737ea2b670456aaacd",
        value: "http://10.65.177.56:7001",
        expiration: "2014-08-17T12:05:57.717243529Z",
        ttl: 560669,
        modifiedIndex: 72626400,
        createdIndex: 72626400
      },
      {
        key: "/_etcd/registry/506f6c1bc729377252232a0121247119/f7a93d1f0cd4d318c9ad0b624afb9cf9",
        value: "http://10.29.193.50:7001",
        expiration: "2014-08-17T17:18:25.045563473Z",
        ttl: 579416,
        modifiedIndex: 72821950,
        createdIndex: 72821950
      }
    ],
    modifiedIndex: 69367741,
    createdIndex: 69367741
  }
}





To rule out firewall settings as a source of your issue, ensure that you can curl each of the IPs from machines in your cluster.

If all of the IPs can be reached, the etcd log can provide more clues:

journalctl -u etcd-member








Communicating with discovery.etcd.io

If your Container Linux cluster can’t communicate out to the public internet, https://discovery.etcd.io won’t work and you’ll have to run your own discovery endpoint, which is described below.




Setting advertised client addresses correctly

Each etcd instance submits the list of -initial-advertise-peer-urls of each etcd instance to the configured discovery service. It’s important to select an address that all peers in the cluster can communicate with. If you are configuring a list of addresses, make sure each member can communicate with at least one of the addresses.

For example, if you’re located in two regions of a cloud provider, configuring a private 10.x address will not work between the two regions, and communication will not be possible between all peers. The -listen-client-urls flag allows you to bind to a specific list of interfaces and ports (or all interfaces) to ensure your etcd traffic is routed properly.






Running your own discovery service

The public discovery service is just an etcd cluster made available to the public internet. Since the discovery service conducts and stores the result of the first leader election, it needs to be consistent. You wouldn’t want two machines in the same cluster to think they were both the leader.

Since etcd is designed to this type of leader election, it was an obvious choice to use it for everyone’s initial leader election. This means that it’s easy to run your own etcd cluster for this purpose.

If you’re interested in how discovery API works behind the scenes in etcd, read about etcd clustering [https://github.com/coreos/etcd/blob/master/Documentation/op-guide/clustering].







          

      

      

    

  

  
    
    Collecting crash logs
    

    
 
  

    
      
          
            
  
Collecting crash logs

In the unfortunate case that an OS crashes, it’s often extremely helpful to gather information about the event. There are two popular tools used to accomplished this goal: kdump and pstore. Container Linux relies on pstore, a persistent storage abstraction provided by the Linux kernel, to store logs in the event of a kernel panic. Since this mechanism is just an abstraction, it depends on hardware support to actually persist the data across reboots. If the hardware support is absent, the pstore will remain empty. On AMD64 machines, pstore is typically backed by the ACPI error record serialization table (ERST).


Using pstore

On Container Linux, the pstore is automatically mounted to /sys/fs/pstore. The contents of the store can be explored using standard filesystem tools:

$ ls /sys/fs/pstore/





On this particular machine, there isn’t anything in the pstore yet. In order to test the mechanism, a kernel panic can be triggered:

$ echo c > /proc/sysrq-trigger





Once the machine boots, the pstore can again be inspected:

$ ls /sys/fs/pstore/
dmesg-erst-6319986351055831041  dmesg-erst-6319986351055831044
dmesg-erst-6319986351055831042  dmesg-erst-6319986351055831045
dmesg-erst-6319986351055831043





Now there are a series of dmesg logs, stored in the ACPI ERST. Looking at the first file, the cause of the panic can be discovered:

$ cat /sys/fs/pstore/dmesg-erst-6319986351055831041
Oops#1 Part1
...
<6>[  201.650687] sysrq: SysRq : Trigger a crash
<1>[  201.654822] BUG: unable to handle kernel NULL pointer dereference at           (null)
<1>[  201.662670] IP: [<ffffffffbd3d1956>] sysrq_handle_crash+0x16/0x20
<4>[  201.668783] PGD 0 
<4>[  201.670809] Oops: 0002 [#1] SMP
<4>[  201.673948] Modules linked in: coretemp sb_edac edac_core x86_pkg_temp_thermal kvm_intel ipmi_ssif kvm mei_me irqbypass i2c_i801 mousedev evdev mei ipmi_si ipmi_msghandler tpm_tis button tpm sch_fq_codel ip_tables hid_generic usbhid hid sd_mod squashfs loop igb ahci xhci_pci ehci_pci i2c_algo_bit libahci xhci_hcd ehci_hcd i2c_core libata i40e hwmon usbcore ptp crc32c_intel scsi_mod usb_common pps_core dm_mirror dm_region_hash dm_log dm_mod autofs4
<4>[  201.714354] CPU: 0 PID: 1899 Comm: bash Not tainted 4.7.0-coreos #1
<4>[  201.720612] Hardware name: Supermicro SYS-F618R3-FT/X10DRFF, BIOS 1.0b 01/07/2015
<4>[  201.728083] task: ffff881fdca79d40 ti: ffff881fd92d0000 task.ti: ffff881fd92d0000
<4>[  201.735553] RIP: 0010:[<ffffffffbd3d1956>]  [<ffffffffbd3d1956>] sysrq_handle_crash+0x16/0x20
<4>[  201.744083] RSP: 0018:ffff881fd92d3d98  EFLAGS: 00010286
<4>[  201.749388] RAX: 000000000000000f RBX: 0000000000000063 RCX: 0000000000000000
<4>[  201.756511] RDX: 0000000000000000 RSI: ffff881fff80dbc8 RDI: 0000000000000063
<4>[  201.763635] RBP: ffff881fd92d3d98 R08: ffff88407ff57b80 R09: 00000000000000c2
<4>[  201.770759] R10: ffff881fe4fab624 R11: 00000000000005dd R12: 0000000000000007
<4>[  201.777885] R13: 0000000000000000 R14: ffffffffbdac37a0 R15: 0000000000000000
<4>[  201.785009] FS:  00007fa68acee700(0000) GS:ffff881fff800000(0000) knlGS:0000000000000000
<4>[  201.793085] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
<4>[  201.798825] CR2: 0000000000000000 CR3: 0000001fdcc97000 CR4: 00000000001406f0
<4>[  201.805949] Stack:
<4>[  201.807961]  ffff881fd92d3dc8 ffffffffbd3d2146 0000000000000002 fffffffffffffffb
<4>[  201.815413]  00007fa68acf6000 ffff883fe2e46f00 ffff881fd92d3de0 ffffffffbd3d259f
<4>[  201.822866]  ffff881fe4fab5c0 ffff881fd92d3e00 ffffffffbd24fda8 ffff883fe2e46f00
<4>[  201.830320] Call Trace:
<4>[  201.832769]  [<ffffffffbd3d2146>] __handle_sysrq+0xf6/0x150
<4>[  201.838331]  [<ffffffffbd3d259f>] write_sysrq_trigger+0x2f/0x40
<4>[  201.844244]  [<ffffffffbd24fda8>] proc_reg_write+0x48/0x70
<4>[  201.849723]  [<ffffffffbd1e4697>] __vfs_write+0x37/0x140
<4>[  201.855038]  [<ffffffffbd283e0d>] ? security_file_permission+0x3d/0xc0
<4>[  201.861561]  [<ffffffffbd0c1062>] ? percpu_down_read+0x12/0x60
<4>[  201.867383]  [<ffffffffbd1e55b8>] vfs_write+0xb8/0x1a0
<4>[  201.872514]  [<ffffffffbd1e6a25>] SyS_write+0x55/0xc0
<4>[  201.877562]  [<ffffffffbd003c6d>] do_syscall_64+0x5d/0x150
<4>[  201.883047]  [<ffffffffbd58e161>] entry_SYSCALL64_slow_path+0x25/0x25
<4>[  201.889474] Code: df ff 48 c7 c7 f3 a3 7d bd e8 47 c5 d3 ff e9 de fe ff ff 66 90 0f 1f 44 00 00 55 c7 05 48 b4 66 00 01 00 00 00 48 89 e5 0f ae f8 <c6> 04 25 00 00 00 00 01 5d c3 0f 1f 44 00 00 55 31 c0 c7 05 5e 
<1>[  201.909425] RIP  [<ffffffffbd3d1956>] sysrq_handle_crash+0x16/0x20
<4>[  201.915615]  RSP <ffff881fd92d3d98>
<4>[  201.919097] CR2: 0000000000000000
<4>[  201.922450] ---[ end trace 8794939ba0598b91 ]---





The cause of the panic was a system request! The remaining files in the pstore contain more of the logs leading up to the panic as well as more context. Each of the files has a small, descriptive header describing the source of the logs. Looking at each of the headers shows the rough structure of the logs:

$ head --lines=1 /sys/fs/pstore/dmesg-erst-6319986351055831041
Oops#1 Part1

$ head --lines=1 /sys/fs/pstore/dmesg-erst-6319986351055831042
Oops#1 Part2

$ head --lines=1 /sys/fs/pstore/dmesg-erst-6319986351055831043
Panic#2 Part1

$ head --lines=1 /sys/fs/pstore/dmesg-erst-6319986351055831044
Panic#2 Part2

$ head --lines=1 /sys/fs/pstore/dmesg-erst-6319986351055831045
Panic#2 Part3





It is important to note that the pstore typically has very limited storage space (on the order of kilobytes) and will not overwrite entries when out of space. The files in /sys/fs/pstore must be removed to free up space. The typical approach is to move the files from the pstore to a more permanent storage location on boot, but Container Linux will not do this automatically for you.







          

      

      

    

  

  
    
    Community supported platforms
    

    
 
  

    
      
          
            
  
Community supported platforms

The Container Linux community has provided support for Container Linux on a number of platforms beyond those officially supported [https://coreos.com/os/docs/latest/] by CoreOS.

The platforms and providers listed below each provide support and documentation for running Container Linux:


Cloud providers


	AURO Cloud


	Brightbox Cloud


	cloud.ca


	Exoscale


	Ikoula


	Linode [https://www.linode.com/]


	NIFTY Cloud


	Packet


	Rackspace Cloud


	RimuHosting LaunchtimeVPS


	VEXXHOST Cloud


	Vultr VPS







Other providers


	CloudStack


	Eucalyptus


	libvirt


	OpenStack


	Vagrant


	VirtualBox


	VMware










          

      

      

    

  

  
    
    Configuring date and time zone
    

    
 
  

    
      
          
            
  
Configuring date and time zone

By default, Container Linux machines keep time in the Coordinated Universal Time (UTC) zone and synchronize their clocks with the Network Time Protocol (NTP). This page contains information about customizing those defaults, explains the change in NTP client daemons in recent Container Linux versions, and offers advice on best practices for timekeeping in Container Linux clusters.


Viewing and changing time and date

The timedatectl(1) [http://www.freedesktop.org/software/systemd/man/timedatectl.html] command displays and sets the date, time, and time zone.

$ timedatectl status
      Local time: Wed 2015-08-26 19:29:12 UTC
  Universal time: Wed 2015-08-26 19:29:12 UTC
        RTC time: Wed 2015-08-26 19:29:12
       Time zone: UTC (UTC, +0000)
 Network time on: no
NTP synchronized: yes
 RTC in local TZ: no
      DST active: n/a






Recommended: UTC time

To avoid time zone confusion and the complexities of adjusting clocks for daylight saving time (or not) in accordance with regional custom, we recommend that all machines in Container Linux clusters use UTC. This is the default time zone. To reset a machine to this default:

$ sudo timedatectl set-timezone UTC








Changing the time zone

If your site or application requires a different system time zone, start by listing the available options:

$ timedatectl list-timezones
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
…





Pick a time zone from the list and set it:

$ sudo timedatectl set-timezone America/New_York





Check the changes:

$ timedatectl
      Local time: Wed 2015-08-26 15:44:07 EDT
  Universal time: Wed 2015-08-26 19:44:07 UTC
        RTC time: Wed 2015-08-26 19:44:07
       Time zone: America/New_York (EDT, -0400)
 Network time on: no
NTP synchronized: yes
 RTC in local TZ: no
      DST active: yes
 Last DST change: DST began at
                  Sun 2015-03-08 01:59:59 EST
                  Sun 2015-03-08 03:00:00 EDT
 Next DST change: DST ends (the clock jumps one hour backwards) at
                  Sun 2015-11-01 01:59:59 EDT
                  Sun 2015-11-01 01:00:00 EST










Time synchronization

Container Linux clusters use NTP to synchronize the clocks of member nodes, and all machines start an NTP client at boot. Container Linux versions later than 681.0.0 [https://coreos.com/releases/#681.0.0] use systemd-timesyncd(8) [http://www.freedesktop.org/software/systemd/man/systemd-timesyncd.service.html] as the default NTP client. Earlier versions used ntpd(8) [http://ntp.org/]. Use systemctl to check which service is running:

$ systemctl status systemd-timesyncd ntpd
● systemd-timesyncd.service - Network Time Synchronization
   Loaded: loaded (/usr/lib64/systemd/system/systemd-timesyncd.service; disabled; vendor preset: disabled)
   Active: active (running) since Thu 2015-05-14 05:43:20 UTC; 5 days ago
     Docs: man:systemd-timesyncd.service(8)
 Main PID: 480 (systemd-timesyn)
   Status: "Using Time Server 169.254.169.254:123 (169.254.169.254)."
   Memory: 448.0K
   CGroup: /system.slice/systemd-timesyncd.service
           └─480 /usr/lib/systemd/systemd-timesyncd

● ntpd.service - Network Time Service
   Loaded: loaded (/usr/lib64/systemd/system/ntpd.service; disabled; vendor preset: disabled)
   Active: inactive (dead)






Recommended NTP sources

Unless you have a highly reliable and precise time server pool, use your cloud provider’s NTP source, or, on bare metal, the default Container Linux NTP servers:

0.coreos.pool.ntp.org
1.coreos.pool.ntp.org
2.coreos.pool.ntp.org
3.coreos.pool.ntp.org








Changing NTP time sources

Systemd-timesyncd can discover NTP servers from DHCP, individual network [http://www.freedesktop.org/software/systemd/man/systemd.network.html] configs, the file timesyncd.conf [http://www.freedesktop.org/software/systemd/man/timesyncd.conf.html], or the default *.coreos.pool.ntp.org pool.

The default behavior uses NTP servers provided by DHCP. To disable this, write a configuration listing your preferred NTP servers into the file /etc/systemd/network/50-dhcp-no-ntp.conf:

[Network]
DHCP=v4
NTP=0.pool.example.com 1.pool.example.com

[DHCP]
UseMTU=true
UseDomains=true
UseNTP=false





Then restart the network daemon:

$ sudo systemctl restart systemd-networkd





NTP time sources can be set in timesyncd.conf with a Container Linux Config snippet like:

storage:
  files:
    - path: /etc/systemd/timesyncd.conf
      filesystem: root
      mode: 0644
      contents:
        inline: |
          [Time]
          NTP=0.pool.example.com 1.pool.example.com










Switching from timesyncd to ntpd

On Container Linux 681.0.0 or later, you can switch from systemd-timesyncd back to ntpd with the following commands:

$ sudo systemctl stop systemd-timesyncd
$ sudo systemctl mask systemd-timesyncd
$ sudo systemctl enable ntpd
$ sudo systemctl start ntpd





or with this Container Linux Config snippet:

systemd:
  units:
    - name: systemd-timesyncd.service
      mask: true
    - name: ntpd.service
      enable: true





Because timesyncd and ntpd are mutually exclusive, it’s important to mask the systemd-tinesyncd service. Systemctl disable or stop alone will not prevent a default service from starting again.


Configuring ntpd

The ntpd service reads all configuration from the file /etc/ntp.conf. It does not use DHCP or other configuration sources. To use a different set of NTP servers, replace the /etc/ntp.conf symlink with something like the following:

server 0.pool.example.com
server 1.pool.example.com

restrict default nomodify nopeer noquery limited kod
restrict 127.0.0.1
restrict [::1]





Then ask ntpd to reload its configuration:

$ sudo systemctl reload ntpd





Or, in a Container Linux Config:

storage:
  files:
    - path: /etc/ntp.conf
      filesystem: root
      mode: 0644
      contents:
        inline: |
          server 0.pool.example.com
          server 1.pool.example.com

          # - Allow only time queries, at a limited rate.
          # - Allow all local queries (IPv4, IPv6)
          restrict default nomodify nopeer noquery limited kod
          restrict 127.0.0.1
          restrict [::1]













          

      

      

    

  

  
    
    DNS Configuration
    

    
 
  

    
      
          
            
  
DNS Configuration

By default, DNS resolution on Container Linux is handled through /etc/resolv.conf, which is a symlink to /run/systemd/resolve/resolv.conf. This file is managed by systemd-resolved [http://www.freedesktop.org/software/systemd/man/systemd-resolved.service.html]. Normally, systemd-resolved gets DNS IP addresses from systemd-networkd [http://www.freedesktop.org/software/systemd/man/systemd-networkd.service.html], either via DHCP or static configuration. DNS IP addresses can also be set via systemd-resolved’s resolved.conf [http://www.freedesktop.org/software/systemd/man/resolved.conf.html]. See Network configuration with networkd for more information on systemd-networkd.


Using a local DNS cache

systemd-resolved includes a caching DNS resolver. To use it for DNS resolution and caching, you must enable it via nsswitch.conf [http://man7.org/linux/man-pages/man5/nsswitch.conf.5.html] by adding resolve to the hosts section.

Here is an example Container Linux Config snippet to do that:

storage:
  files:
    - path: /etc/nsswitch.conf
      filesystem: root
      mode: 0644
      contents:
        inline: |
          # /etc/nsswitch.conf:

          passwd:      files usrfiles
          shadow:      files usrfiles
          group:       files usrfiles

          hosts:       files usrfiles resolve dns
          networks:    files usrfiles dns

          services:    files usrfiles
          protocols:   files usrfiles
          rpc:         files usrfiles

          ethers:      files
          netmasks:    files
          netgroup:    files
          bootparams:  files
          automount:   files
          aliases:     files





Only nss-aware applications can take advantage of the systemd-resolved cache. Notably, this means that statically linked Go programs and programs running within Docker/rkt will use /etc/resolv.conf only, and will not use the systemd-resolve cache.







          

      

      

    

  

  
    
    Constants and IDs
    

    
 
  

    
      
          
            
  
Constants and IDs

This document contains well-known constants and IDs used by Container Linux.


Omaha application ID

This UUID is used to identify Container Linux to the update service, i.e. as an appid over the Omaha protocol.

| Label            | Value                                  | Notes |
|——————|—————————————-|——-|
| Container Linux  | e96281a6-d1af-4bde-9a0a-97b76e56dc57 | -     |




GPT partition types

These GUIDs are dedicated GPT partition types [https://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_type_GUIDs] for specific Container Linux usages.

| Label              | Value                                  | Notes |
|——————–|—————————————-|——-|
| coreos-usr       | 5dfbf5f4-2848-4bac-aa5e-0d9a20b745a6 | Alias for historical coreos-rootfs, currently used for /usr only |
| coreos-resize    | 3884dd41-8582-4404-b9a8-e9b84f2df50e | Support for auto-resizing via extend-filesystems, current default type for / |
| coreos-reserved  | c95dc21a-df0e-4340-8d7b-26cbfa9a03e0 | Reserved for OEM usage, support for customizations via OEM-CONFIG partition |
| coreos-root-raid | be9067b9-ea49-4f15-b4f6-f36f8c9e1818 | RAID partition containing a rootfs, see notes for details and limitations |
| coreos-early-cryptsetup | ab997286-8ab3-400a-ad19-bae58743b7af | Support for unlocking cryptsetup volumes in initramfs via coreos-cryptagent|

For more information on the partitioning scheme used by Container Linux, read the disk layout documentation.







          

      

      

    

  

  
    
    Customizing the etcd unit
    

    
 
  

    
      
          
            
  
Customizing the etcd unit

The etcd systemd unit can be customized by overriding the unit that ships with the default Container Linux settings. Common use-cases for doing this are covered below.


Use client certificates

etcd supports client certificates as a way to provide secure communication between clients ↔ leader and internal traffic between etcd peers in the cluster. Configuring certificates for both scenarios is done through the etcd section in a Container Linux Config. Options provided here will augment the unit that ships with Container Linux.

Please follow the instruction to know how to create self-signed certificates and private keys.

etcd:
  # More settings are needed here for a functioning etcd daemon
  ca_file:        /path/to/CA.pem
  cert_file:      /path/to/server.crt
  key_file:       /path/to/server.key
  peer_ca_file:   /path/to/CA.pem
  peer_cert_file: /path/to/peers.crt
  peer_key_file:  /path/to/peers.key
storage:
  files:
    - path: /path/to/CA.pem
      filesystem: root
      mode: 0644
      contents:
        inline: |
          -----BEGIN CERTIFICATE-----
          MIIFNDCCAx6gAwIBAgIBATALBgkqhkiG9w0BAQUwLTEMMAoGA1UEBhMDVVNBMRAw
          ...snip...
          EtHaxYQRy72yZrte6Ypw57xPRB8sw1DIYjr821Lw05DrLuBYcbyclg==
          -----END CERTIFICATE-----
    - path: /path/to/server.crt
      filesystem: root
      mode: 0644
      contents:
        inline: |
          -----BEGIN CERTIFICATE-----
          MIIFWTCCA0OgAwIBAgIBAjALBgkqhkiG9w0BAQUwLTEMMAoGA1UEBhMDVVNBMRAw
          DgYDVQQKEwdldGNkLWNhMQswCQYDVQQLEwJDQTAeFw0xNDA1MjEyMTQ0MjhaFw0y
          ...snip...
          rdmtCVLOyo2wz/UTzvo7UpuxRrnizBHpytE4u0KgifGp1OOKY+1Lx8XSH7jJIaZB
          a3m12FMs3AsSt7mzyZk+bH2WjZLrlUXyrvprI40=
          -----END CERTIFICATE-----
    - path: /path/to/server.key
      filesystem: root
      mode: 0644
      contents:
        inline: |
          -----BEGIN RSA PRIVATE KEY-----
          Proc-Type: 4,ENCRYPTED
          DEK-Info: DES-EDE3-CBC,069abc493cd8bda6

          TBX9mCqvzNMWZN6YQKR2cFxYISFreNk5Q938s5YClnCWz3B6KfwCZtjMlbdqAakj
          ...snip...
          mgVh2LBerGMbsdsTQ268sDvHKTdD9MDAunZlQIgO2zotARY02MLV/Q5erASYdCxk
          -----END RSA PRIVATE KEY-----
    - path: /path/to/peers.crt
      filesystem: root
      mode: 0644
      contents:
        inline: |
          -----BEGIN CERTIFICATE-----
          VQQLEwJDQTAeFw0xNDA1MjEyMTQ0MjhaFw0yMIIFWTCCA0OgAwIBAgIBAjALBgkq
          DgYDVQQKEwdldGNkLWNhMQswCQYDhkiG9w0BAQUwLTEMMAoGA1UEBhMDVVNBMRAw
          ...snip...
          BHpytE4u0KgifGp1OOKY+1Lx8XSH7jJIaZBrdmtCVLOyo2wz/UTzvo7UpuxRrniz
          St7mza3m12FMs3AsyZk+bH2WjZLrlUXyrvprI90=
          -----END CERTIFICATE-----
    - path: /path/to/peers.key
      filesystem: root
      mode: 0644
      contents:
        inline: |
          -----BEGIN RSA PRIVATE KEY-----
          Proc-Type: 4,ENCRYPTED
          DEK-Info: DES-EDE3-CBC,069abc493cd8bda6

          SFreNk5Q938s5YTBX9mCqvzNMWZN6YQKR2cFxYIClnCWz3B6KfwCZtjMlbdqAakj
          ...snip...
          DvHKTdD9MDAunZlQIgO2zotmgVh2LBerGMbsdsTQ268sARY02MLV/Q5erASYdCxk
          -----END RSA PRIVATE KEY-----











          

      

      

    

  

  
    
    Customizing docker
    

    
 
  

    
      
          
            
  
Customizing docker

The Docker systemd unit can be customized by overriding the unit that ships with the default Container Linux settings. Common use-cases for doing this are covered below.


Enable the remote API on a new socket

Create a file called /etc/systemd/system/docker-tcp.socket to make Docker available on a TCP socket on port 2375.

[Unit]
Description=Docker Socket for the API

[Socket]
ListenStream=2375
BindIPv6Only=both
Service=docker.service

[Install]
WantedBy=sockets.target





Then enable this new socket:

systemctl enable docker-tcp.socket
systemctl stop docker
systemctl start docker-tcp.socket
systemctl start docker





Test that it’s working:

docker -H tcp://127.0.0.1:2375 ps






Container Linux Config

To enable the remote API on every Container Linux machine in a cluster, use a Container Linux Config. We need to provide the new socket file and Docker’s socket activation support will automatically start using the socket:

systemd:
  units:
    - name: docker-tcp.socket
      enable: true
      contents: |
        [Unit]
        Description=Docker Socket for the API

        [Socket]
        ListenStream=2375
        BindIPv6Only=both
        Service=docker.service

        [Install]
        WantedBy=sockets.target





To keep access to the port local, replace the ListenStream configuration above with:

        [Socket]
        ListenStream=127.0.0.1:2375










Enable the remote API with TLS authentication

Docker TLS configuration consists of three parts: keys creation, configuring new systemd socket [https://www.freedesktop.org/software/systemd/man/systemd.socket.html] unit and systemd drop-in configuration.


TLS keys creation

Please follow the instruction to know how to create self-signed certificates and private keys. Then copy with following files into /etc/docker Container Linux’s directory and fix their permissions:

scp ~/cfssl/{server.pem,server-key.pem,ca.pem} coreos.example.com:
ssh core@coreos.example.com
sudo mv {server.pem,server-key.pem,ca.pem} /etc/docker/
sudo chown root:root /etc/docker/{server-key.pem,server.pem,ca.pem}
sudo chmod 0600 /etc/docker/server-key.pem





On your local host copy certificates into ~/.docker:

mkdir ~/.docker
chmod 700 ~/.docker
cd ~/.docker
cp -p ~/cfssl/ca.pem ca.pem
cp -p ~/cfssl/client.pem cert.pem
cp -p ~/cfssl/client-key.pem key.pem








Enable the secure remote API on a new socket

Create a file called /etc/systemd/system/docker-tls-tcp.socket to make Docker available on a secured TCP socket on port 2376.

[Unit]
Description=Docker Secured Socket for the API

[Socket]
ListenStream=2376
BindIPv6Only=both
Service=docker.service

[Install]
WantedBy=sockets.target





Then enable this new socket:

systemctl enable docker-tls-tcp.socket
systemctl stop docker
systemctl start docker-tls-tcp.socket








Drop-in configuration

Create /etc/systemd/system/docker.service.d/10-tls-verify.conf drop-in for systemd Docker service:

[Service]
Environment="DOCKER_OPTS=--tlsverify --tlscacert=/etc/docker/ca.pem --tlscert=/etc/docker/server.pem --tlskey=/etc/docker/server-key.pem"





Reload systemd config files and restart docker service:

sudo systemctl daemon-reload
sudo systemctl restart docker.service





Now you can access your Docker’s API through TLS secured connection:

docker --tlsverify -H tcp://server:2376 images
# or
docker --tlsverify -H tcp://server.example.com:2376 images





If you’ve experienceed problems connection to remote Docker API using TLS connection, you can debug it with curl:

curl -v --cacert ~/.docker/ca.pem --cert ~/.docker/cert.pem --key ~/.docker/key.pem https://server:2376





Or on your Container Linux host:

journalctl -f -u docker.service





In addition you can export environment variables and use docker client without additional options:

export DOCKER_HOST=tcp://server.example.com:2376 DOCKER_TLS_VERIFY=1
docker images








Container Linux Config

A Container Linux Config for Docker TLS authentication will look like:

storage:
  files:
    - path: /etc/docker/ca.pem
      filesystem: root
      mode: 0644
      contents:
        inline: |
          -----BEGIN CERTIFICATE-----
          MIIFNDCCAx6gAwIBAgIBATALBgkqhkiG9w0BAQswLTEMMAoGA1UEBhMDVVNBMRAw
          DgYDVQQKEwdldGNkLWNhMQswCQYDVQQLEwJDQTAeFw0xNTA5MDIxMDExMDhaFw0y
          NTA5MDIxMDExMThaMC0xDDAKBgNVBAYTA1VTQTEQMA4GA1UEChMHZXRjZC1jYTEL
          ... ... ...
    - path: /etc/docker/server.pem
      filesystem: root
      mode: 0644
      contents:
        inline: |
          -----BEGIN CERTIFICATE-----
          MIIFajCCA1SgAwIBAgIBBTALBgkqhkiG9w0BAQswLTEMMAoGA1UEBhMDVVNBMRAw
          DgYDVQQKEwdldGNkLWNhMQswCQYDVQQLEwJDQTAeFw0xNTA5MDIxMDM3MDFaFw0y
          NTA5MDIxMDM3MDNaMEQxDDAKBgNVBAYTA1VTQTEQMA4GA1UEChMHZXRjZC1jYTEQ
          ... ... ...
    - path: /etc/docker/server-key.pem
      filesystem: root
      mode: 0644
      contents:
        inline: |
          -----BEGIN RSA PRIVATE KEY-----
          MIIJKAIBAAKCAgEA23Q4yELhNEywScrHl6+MUtbonCu59LIjpxDMAGxAHvWhWpEY
          P5vfas8KgxxNyR+U8VpIjEXvwnhwCx/CSCJc3/VtU9v011Ir0WtTrNDocb90fIr3
          YeRWq744UJpBeDHPV9opf8xFE7F74zWeTVMwtiMPKcQDzZ7XoNyJMxg1wmiMbdCj
          ... ... ...
systemd:
  units:
    - name: docker-tls-tcp.socket
      enable: true
      contents: |
        [Unit]
        Description=Docker Secured Socket for the API

        [Socket]
        ListenStream=2376
        BindIPv6Only=both
        Service=docker.service

        [Install]
        WantedBy=sockets.target
docker:
  flags:
    - --tlsverify
    - --tlscacert=/etc/docker/ca.pem
    - --tlscert=/etc/docker/server.pem
    - --tlskey=/etc/docker/server-key.pem










Use attached storage for Docker images

Docker containers can be very large and debugging a build process makes it easy to accumulate hundreds of containers. It’s advantageous to use attached storage to expand your capacity for container images. Check out the guide to mounting storage to your Container Linux machine for an example of how to bind mount storage into /var/lib/docker.




Enabling the Docker debug flag

Set the --debug (-D) flag in the DOCKER_OPTS environment variable by using a drop-in file. For example, the following could be written to /etc/systemd/system/docker.service.d/10-debug.conf:

[Service]
Environment=DOCKER_OPTS=--debug





Now tell systemd about the new configuration and restart Docker:

systemctl daemon-reload
systemctl restart docker





To test our debugging stream, run a Docker command and then read the systemd journal, which should contain the output:

docker ps
journalctl -u docker






Container Linux Config

If you need to modify a flag across many machines, you can add the flag with a Container Linux Config:

docker:
  flags:
    - --debug










Use an HTTP proxy

If you’re operating in a locked down networking environment, you can specify an HTTP proxy for Docker to use via an environment variable. First, create a directory for drop-in configuration for Docker:

mkdir /etc/systemd/system/docker.service.d





Now, create a file called /etc/systemd/system/docker.service.d/http-proxy.conf that adds the environment variable:

[Service]
Environment="HTTP_PROXY=http://proxy.example.com:8080"





To apply the change, reload the unit and restart Docker:

systemctl daemon-reload
systemctl restart docker





Proxy environment variables can also be set system-wide [https://coreos.com/os/docs/latest/using-environment-variables-in-systemd-units.html#system-wide-environment-variables].


Container Linux Config

The easiest way to use this proxy on all of your machines is via a Container Linux Config:

systemd:
  units:
    - name: docker.service
      enable: true
      dropins:
        - name: 20-http-proxy.conf
          contents: |
            [Service]
            Environment="HTTP_PROXY=http://proxy.example.com:8080"










Increase ulimits

If you need to increase certain ulimits that are too low for your application by default, like memlock, you will need to modify the Docker service to increase the limit. First, create a directory for drop-in configuration for Docker:

mkdir /etc/systemd/system/docker.service.d





Now, create a file called /etc/systemd/system/docker.service.d/increase-ulimit.conf that adds increased limit:

[Service]
LimitMEMLOCK=infinity





To apply the change, reload the unit and restart Docker:

systemctl daemon-reload
systemctl restart docker






Container Linux Config

The easiest way to use these new ulimits on all of your machines is via a Container Linux Config:

systemd:
  units:
    - name: docker.service
      enable: true
      dropins:
        - name: 30-increase-ulimit.conf
          contents: |
            [Service]
            LimitMEMLOCK=infinity










Using a dockercfg file for authentication

A json file .dockercfg can be created in your home directory that holds authentication information for a public or private Docker registry.

Read more about registry authentication.







          

      

      

    

  

  
    
    Customizing the SSH daemon
    

    
 
  

    
      
          
            
  
Customizing the SSH daemon

Container Linux defaults to running an OpenSSH daemon using systemd socket activation – when a client connects to the port configured for SSH, sshd is started on the fly for that client using a systemd unit derived automatically from a template. In some cases you may want to customize this daemon’s authentication methods or other configuration. This guide will show you how to do that at boot time using a Container Linux Config, and after building by modifying the systemd unit file.

As a practical example, when a client fails to connect by not completing the TCP connection (e.g. because the “client” is actually a TCP port scanner), the MOTD may report failures of systemd units (which will be named by the source IP that failed to connect) next time you log in to the Container Linux host. These failures are not themselves harmful, but it is a good general practice to change how SSH listens, either by changing the IP address sshd listens to from the default setting (which listens on all configured interfaces), changing the default port, or both.


Customizing sshd with a Container Linux Config

In this example we will disable logins for the root user, only allow login for the core user and disable password based authentication. For more details on what sections can be added to /etc/ssh/sshd_config see the OpenSSH manual [http://www.openssh.com/cgi-bin/man.cgi?query=sshd_config].
If you’re interested in additional security options, Mozilla provides a well-commented example of a hardened configuration [https://wiki.mozilla.org/Security/Guidelines/OpenSSH#Modern_.28OpenSSH_6.7.2B.29].

storage:
  files:
    - path: /etc/ssh/sshd_config
      filesystem: root
      mode: 0600
      contents:
        inline: |
          # Use most defaults for sshd configuration.
          UsePrivilegeSeparation sandbox
          Subsystem sftp internal-sftp
          UseDNS no

          PermitRootLogin no
          AllowUsers core
          AuthenticationMethods publickey






Changing the sshd port

Container Linux ships with socket-activated SSH daemon by default. The configuration for this can be found at /usr/lib/systemd/system/sshd.socket. We’re going to override some of the default settings for this in the Container Linux Config provided at boot:

systemd:
  units:
    - name: sshd.socket
      dropins:
      - name: 10-sshd-port.conf
        contents: |
          [Socket]
          ListenStream=
          ListenStream=222





sshd will now listen only on port 222 on all interfaces when the system is built.




Disabling socket activation for sshd

It may be desirable to disable socket-activation for sshd to ensure it will reliably accept connections even when systemd or dbus aren’t operating correctly.

To configure sshd on Container Linux without socket activation, a Container Linux Config file similar to the following may be used:

systemd:
  units:
  - name: sshd.service
    enable: true
  - name: sshd.socket
    mask: true





Note that in this configuration the port will be configured by updating the /etc/ssh/sshd_config file with the Port directive rather than via sshd.socket.




Further reading

Read the full Container Linux Config guide for more details on working with Container Linux Configs, including setting user’s ssh keys.






Customizing sshd after first boot

Since Container Linux Configs are only applied on first boot, existing machines will have to be configured in a different way.

The following sections walk through applying the same changes documented above on a running machine.

Note: To avoid incidentally locking yourself out of the machine, it’s a good idea to double-check you’re able to directly login to the machine’s console, if applicable.


Customizing sshd_config

Since /etc/ssh/sshd_config is a symlink to a read only file in /usr, it
needs to be replaced with a regular file before it may be edited.

This, for example, can be done by running sudo sed -i '' /etc/ssh/sshd_config.

At this point, any configuration changes can easily be applied by editing the file /etc/ssh/sshd_config.




Changing the sshd port

The sshd.socket unit may be configured via systemd dropins.

To change how sshd listens, update the list of ListenStreams in the [Socket] section of the dropin.

Note: ListenStream is a list of values with each line adding to the list. An empty value clears the list, which is why ListenStream= is necessary to prevent it from also listening on the default port 22.

To change just the listened-to port (in this example, port 222), create a dropin at /etc/systemd/system/sshd.socket.d/10-sshd-listen-ports.conf

# /etc/systemd/system/sshd.socket.d/10-sshd-listen-ports.conf
[Socket]
ListenStream=
ListenStream=222





To change the listened-to IP address (in this example, 10.20.30.40):

# /etc/systemd/system/sshd.socket.d/10-sshd-listen-ports.conf
[Socket]
ListenStream=
ListenStream=10.20.30.40:22
FreeBind=true





You can specify both an IP and an alternate port in a single ListenStream line. IPv6 address bindings would be specified using the format [2001:db8::7]:22.

Note: While specifying an IP address is optional, you must always specify the port, even if it is the default SSH port. The FreeBind option is used to allow the socket to be bound on addresses that are not yet configured on an interface, to avoid issues caused by delays in IP configuration at boot. (This option is required only if you are specifying an address.)

Multiple ListenStream lines can be specified, in which case sshd will listen on all the specified sockets:

# /etc/systemd/system/sshd.socket.d/10-sshd-listen-ports.conf
[Socket]
ListenStream=
ListenStream=222
ListenStream=10.20.30.40:223
FreeBind=true








Activating changes

After creating the dropin file, the changes can be activated by doing a daemon-reload and restarting sshd.socket

$ sudo systemctl daemon-reload
$ sudo systemctl restart sshd.socket





We now see that systemd is listening on the new sockets:

$ systemctl status sshd.socket
● sshd.socket - OpenSSH Server Socket
   Loaded: loaded (/etc/systemd/system/sshd.socket; disabled; vendor preset: disabled)
   Active: active (listening) since Wed 2015-10-14 21:04:31 UTC; 2min 45s ago
   Listen: [::]:222 (Stream)
           10.20.30.40:223 (Stream)
 Accepted: 1; Connected: 0
...





And if we attempt to connect to port 22 on our public IP, the connection is rejected, but port 222 works:

$ ssh core@[public IP]
ssh: connect to host [public IP] port 22: Connection refused
$ ssh -p 222 core@[public IP]
Container Linux by CoreOS stable (1353.8.0)
core@machine $








Disabling socket-activation for sshd

Simply mask the systemd.socket unit:

# systemctl mask --now sshd.socket





Finally, restart the sshd.service unit:

# systemctl restart sshd.service








Further reading on systemd units

For more information about configuring Container Linux hosts with systemd, see Getting Started with systemd.









          

      

      

    

  

  
    
    Developer Guides
    

    
 
  

    
      
          
            
  
Developer Guides

Most users will never have to build Container Linux from source or modify it in any way. If you have a need to modify Container Linux, we provide an SDK that allows you to build your own developer images. We also provide OEM functionality for cloud providers and other companies that must customize Container Linux to run within their environment.


	Modifying Container Linux


	Building production images


	Building custom kernel modules


	SDK tips and tricks


	Disk layout


	Kola integration testing framework [https://github.com/coreos/mantle/blob/master/README.md#kola]








          

      

      

    

  

  
    
    Disabling SMT on CoreOS Container Linux
    

    
 
  

    
      
          
            
  
Disabling SMT on CoreOS Container Linux

Recent Intel CPU vulnerabilities (L1TF [https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html] and MDS [https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html]) cannot be fully mitigated in software without disabling Simultaneous Multi-Threading. This can have a substantial performance impact and is only necessary for certain workloads, so for compatibility reasons, SMT is enabled by default.

In addition, the Intel TAA [https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html] vulnerability cannot be fully mitigated without disabling either of SMT or the Transactional Synchronization Extensions (TSX). Disabling TSX generally has less performance impact, so is the preferred approach on systems that don’t otherwise need to disable SMT. For compatibility reasons, TSX is enabled by default.

SMT and TSX should be disabled on affected Intel processors under the following circumstances:


	A bare-metal host runs untrusted virtual machines, and other arrangements [https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html#mitigation-selection-guide] have not been made for mitigation.


	A bare-metal host runs untrusted code outside a virtual machine.




SMT can be conditionally disabled by passing mitigations=auto,nosmt on the kernel command line. This will disable SMT only if required for mitigating a vulnerability. This approach has two caveats:


	It does not protect against unknown vulnerabilities in SMT.


	It allows future Container Linux updates to disable SMT if needed to mitigate new vulnerabilities.




Alternatively, SMT can be unconditionally disabled by passing nosmt on the kernel command line. This provides the most protection and avoids possible behavior changes on upgrades, at the cost of a potentially unnecessary reduction in performance.

TSX can be conditionally disabled on vulnerable CPUs by passing tsx=auto on the kernel command line, or unconditionally disabled by passing tsx=off. However, neither setting takes effect on systems affected by MDS, since MDS mitigation automatically protects against TAA as well.

For typical use cases, we recommend enabling the mitigations=auto,nosmt and tsx=auto command-line options.


Configuring new machines

The following Container Linux Config performs two tasks:


	Adds mitigations=auto,nosmt tsx=auto to the kernel command line. This affects the second and subsequent boots of the machine, but not the first boot.


	On the first boot, disables SMT at runtime if the system has an Intel processor. This is sufficient to protect against currently-known SMT vulnerabilities until the system is rebooted. After reboot, SMT will be re-enabled if the processor is not actually vulnerable.




# Add kernel command-line arguments to automatically disable SMT or TSX
# on CPUs where they are vulnerable.  This will affect the second and
# subsequent boots of the machine, but not the first boot.
storage:
  filesystems:
    - name: OEM
      mount:
        device: /dev/disk/by-label/OEM
        format: ext4
  files:
    - filesystem: OEM
      path: /grub.cfg
      append: true
      mode: 0644
      contents:
        inline: |
          # Disable SMT on CPUs affected by MDS or similar vulnerabilities.
          # Disable TSX on CPUs affected by TAA but not by MDS.
          set linux_append="$linux_append mitigations=auto,nosmt tsx=auto"

# On the first boot only, disable SMT at runtime if it is enabled and
# the system has an Intel CPU.  L1TF, MDS, and TAA vulnerabilities are
# limited to Intel CPUs.
systemd:
  units:
    - name: disable-smt-firstboot.service
      enabled: true
      contents: |
        [Unit]
        Description=Disable SMT on first boot on Intel CPUs to mitigate MDS
        DefaultDependencies=no
        Before=sysinit.target shutdown.target
        Conflicts=shutdown.target
        ConditionFirstBoot=true

        [Service]
        Type=oneshot
        ExecStart=/bin/bash -c 'active="$(cat /sys/devices/system/cpu/smt/active)" && if [[ "$active" != 0 ]] && grep -q "vendor_id.*GenuineIntel" /proc/cpuinfo; then echo "Disabling SMT." && echo off > /sys/devices/system/cpu/smt/control; fi'

        [Install]
        WantedBy=sysinit.target








Configuring existing machines

To add mitigations=auto,nosmt tsx=auto to the kernel command line on an existing system, add the following line to /usr/share/oem/grub.cfg:

set linux_append="$linux_append mitigations=auto,nosmt tsx=auto"





For example, using SSH:

ssh core@node01 'sudo sh -c "echo \"set linux_append=\\\"\\\$linux_append mitigations=auto,nosmt tsx=auto\\\"\" >> /usr/share/oem/grub.cfg && systemctl reboot"'





If you use locksmith for reboot coordination, replace systemctl reboot with locksmithctl send-need-reboot.







          

      

      

    

  

  
    
    Generate self-signed certificates
    

    
 
  

    
      
          
            
  
Generate self-signed certificates

If you build Container Linux cluster on top of public networks it is recommended to enable encryption for Container Linux services to prevent traffic interception and man-in-the-middle attacks. For these purposes you have to use Certificate Authority (CA), private keys and certificates signed by CA. Let’s use cfssl [https://github.com/cloudflare/cfssl] and walk through the whole process to create all these components.

NOTE: We will use basic procedure here. If your configuration requires advanced security options, please refer to official cfssl [https://github.com/cloudflare/cfssl] documentation.


Download cfssl

CloudFlare’s distributes cfssl [https://github.com/cloudflare/cfssl] source code on github page and binaries on cfssl website [https://pkg.cfssl.org].

Our documentation assumes that you will run cfssl [https://github.com/cloudflare/cfssl] on your local x86_64 Linux host.

mkdir ~/bin
curl -s -L -o ~/bin/cfssl https://pkg.cfssl.org/R1.2/cfssl_linux-amd64
curl -s -L -o ~/bin/cfssljson https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64
chmod +x ~/bin/{cfssl,cfssljson}
export PATH=$PATH:~/bin








Initialize a certificate authority

First of all we have to save default cfssl options for future substitutions:

mkdir ~/cfssl
cd ~/cfssl
cfssl print-defaults config > ca-config.json
cfssl print-defaults csr > ca-csr.json






Certificate types which are used inside Container Linux


	client certificate is used to authenticate client by server. For example etcdctl, etcd proxy, or docker clients.


	server certificate is used by server and verified by client for server identity. For example docker server or kube-apiserver.


	peer certificate is used by etcd cluster members as they communicate with each other in both ways.







Configure CA options

Now we can configure signing options inside ca-config.json config file. Default options contain following preconfigured fields:


	profiles: www with server auth (TLS Web Server Authentication) X509 V3 extension and client with client auth (TLS Web Client Authentication) X509 V3 extension.


	expiry: with 8760h default value (or 365 days)




For compliance let’s rename www profile into server, create additional peer profile with both server auth and client auth extensions, and set expiry to 43800h (5 years):

{
    "signing": {
        "default": {
            "expiry": "43800h"
        },
        "profiles": {
            "server": {
                "expiry": "43800h",
                "usages": [
                    "signing",
                    "key encipherment",
                    "server auth"
                ]
            },
            "client": {
                "expiry": "43800h",
                "usages": [
                    "signing",
                    "key encipherment",
                    "client auth"
                ]
            },
            "peer": {
                "expiry": "43800h",
                "usages": [
                    "signing",
                    "key encipherment",
                    "server auth",
                    "client auth"
                ]
            }
        }
    }
}





You can also modify ca-csr.json Certificate Signing Request (CSR):

{
    "CN": "My own CA",
    "key": {
        "algo": "rsa",
        "size": 2048
    },
    "names": [
        {
            "C": "US",
            "L": "CA",
            "O": "My Company Name",
            "ST": "San Francisco",
            "OU": "Org Unit 1",
            "OU": "Org Unit 2"
        }
    ]
}





And generate CA with defined options:

cfssl gencert -initca ca-csr.json | cfssljson -bare ca -





You’ll get following files:

ca-key.pem
ca.csr
ca.pem






	Please keep ca-key.pem file in safe. This key allows to create any kind of certificates within your CA.


	*.csr files are not used in our example.







Generate server certificate

cfssl print-defaults csr > server.json





Most important values for server certificate are Common Name (CN) and hosts. We have to substitute them, for example:

...
    "CN": "coreos1",
    "hosts": [
        "192.168.122.68",
        "ext.example.com",
        "coreos1.local",
        "coreos1"
    ],
...





Now we are ready to generate server certificate and private key:

cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=server server.json | cfssljson -bare server





Or without CSR json file:

echo '{"CN":"coreos1","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=server -hostname="192.168.122.68,ext.example.com,coreos1.local,coreos1" - | cfssljson -bare server





You’ll get following files:

server-key.pem
server.csr
server.pem








Generate peer certificate

cfssl print-defaults csr > member1.json





Substitute CN and hosts values, for example:

...
    "CN": "member1",
    "hosts": [
        "192.168.122.101",
        "ext.example.com",
        "member1.local",
        "member1"
    ],
...





Now we are ready to generate member1 certificate and private key:

cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=peer member1.json | cfssljson -bare member1





Or without CSR json file:

echo '{"CN":"member1","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=peer -hostname="192.168.122.101,ext.example.com,member1.local,member1" - | cfssljson -bare member1





You’ll get following files:

member1-key.pem
member1.csr
member1.pem





Repeat these steps for each etcd member hostname.




Generate client certificate

cfssl print-defaults csr > client.json





For client certificate we can ignore hosts values and set only Common Name (CN) to client value:

...
    "CN": "client",
    "hosts": [""],
...





Generate client certificate:

cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=client client.json | cfssljson -bare client





Or without CSR json file:

echo '{"CN":"client","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=client - | cfssljson -bare client





You’ll get following files:

client-key.pem
client.csr
client.pem










TLDR


Download binaries

mkdir ~/bin
curl -s -L -o ~/bin/cfssl https://pkg.cfssl.org/R1.2/cfssl_linux-amd64
curl -s -L -o ~/bin/cfssljson https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64
chmod +x ~/bin/{cfssl,cfssljson}
export PATH=$PATH:~/bin








Create directory to store certificates:

mkdir ~/cfssl
cd ~/cfssl








Generate CA and certificates

echo '{"CN":"CA","key":{"algo":"rsa","size":2048}}' | cfssl gencert -initca - | cfssljson -bare ca -
echo '{"signing":{"default":{"expiry":"43800h","usages":["signing","key encipherment","server auth","client auth"]}}}' > ca-config.json
export ADDRESS=192.168.122.68,ext1.example.com,coreos1.local,coreos1
export NAME=server
echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl gencert -config=ca-config.json -ca=ca.pem -ca-key=ca-key.pem -hostname="$ADDRESS" - | cfssljson -bare $NAME
export ADDRESS=
export NAME=client
echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl gencert -config=ca-config.json -ca=ca.pem -ca-key=ca-key.pem -hostname="$ADDRESS" - | cfssljson -bare $NAME








Verify data

openssl x509 -in ca.pem -text -noout
openssl x509 -in server.pem -text -noout
openssl x509 -in client.pem -text -noout








Things to know


	Don’t put your ca-key.pem into a Container Linux Config, it is recommended to store it in safe place. This key allows to generate as much certificates as possible.


	Keep key files in safe. Don’t forget to set proper file permissions, i.e. chmod 0600 server-key.pem.


	Certificates in this TLDR example have both server auth and client auth X509 V3 extensions and you can use them with servers and clients’ authentication.


	You are free to generate keys and certificates for wildcard * address as well. They will work on any machine. It will simplify certificates routine but increase security risks.









More information

For another examples, check out these documents:

Custom Certificate Authorities
etcd Security Model [https://github.com/coreos/etcd/blob/master/Documentation/op-guide/security]







          

      

      

    

  

  
    
    Getting started with Docker
    

    
 
  

    
      
          
            
  
Getting started with Docker

Docker is an open-source project that makes creating and managing Linux containers really easy. Containers are like extremely lightweight VMs – they allow code to run in isolation from other containers but safely share the machine’s resources, all without the overhead of a hypervisor.

Docker containers can boot extremely fast (in milliseconds!) which gives you unprecedented flexibility in managing load across your cluster. For example, instead of running chef on each of your VMs, it’s faster and more reliable to have your build system create a container and launch it on the appropriate number of Container Linux hosts. This guide will show you how to launch a container, install some software on it, commit that container, and optionally launch it on another Container Linux machine. Before starting, make sure you’ve got at least one Container Linux machine up and running — try it on Amazon EC2 or locally with Vagrant.


Docker CLI basics

Docker has a straightforward CLI [https://docs.docker.com/engine/reference/commandline/cli/] that allows you to do almost everything you could want to a container. All of these commands use the image id (ex. be29975e0098), the image name (ex. myusername/webapp) and the container id (ex. 72d468f455ea) interchangeably depending on the operation you are trying to do. This is confusing at first, so pay special attention to what you’re using.




Launching a container

Launching a container is simple as docker run + the image name you would like to run + the command to run within the container. If the image doesn’t exist on your local machine, Docker will attempt to fetch it from the public image registry. Later we’ll explore how to use Docker with a private registry. It’s important to note that containers are designed to stop once the command executed within them has exited. For example, if you ran /bin/echo hello world as your command, the container will start, print hello world and then stop:

docker run ubuntu /bin/echo hello world





Let’s launch an Ubuntu container and install Apache inside of it using the bash prompt:

docker run -t -i ubuntu /bin/bash





The -t and -i flags allocate a pseudo-tty and keep stdin open even if not attached. This will allow you to use the container like a traditional VM as long as the bash prompt is running. Install Apache with apt-get update && apt-get install apache2. You’re probably wondering what address you can connect to in order to test that Apache was correctly installed…we’ll get to that after we commit the container.




Committing a container

After that completes, we need to commit these changes to our container with the container ID and the image name.

To find the container ID, open another shell (so the container is still running) and read the ID using docker ps.

The image name is in the format of username/name. We’re going to use coreos as our username in this example but you should sign up for a Docker.IO user account [https://hub.docker.com/account/signup/] and use that instead.

It’s important to note that you can commit using any username and image name locally, but to push an image to the public registry, the username must be a valid Docker.IO user account [https://hub.docker.com/account/signup/].

Commit the container with the container ID, your username, and the name apache:

docker commit 72d468f455ea coreos/apache





The overlay filesystem works similar to git: our image now builds off of the ubuntu base and adds another layer with Apache on top. These layers get cached separately so that you won’t have to pull down the ubuntu base more than once.




Keeping the Apache container running

Now we have our Ubuntu container with Apache running in one shell and an image of that container sitting on disk. Let’s launch a new container based on that image but set it up to keep running indefinitely. The basic syntax looks like this, but we need to configure a few additional options that we’ll fill in as we go:

docker run [options] [image] [process]





The first step is to tell Docker that we want to run our coreos/apache image:

docker run [options] coreos/apache [process]






Run container detached

When running Docker containers manually, the most important option is to run the container in detached mode with the -d flag. This will output the container ID to show that the command was successful, but nothing else. At any time you can run docker ps in the other shell to view a list of the running containers. Our command now looks like:

docker run -d coreos/apache [process]





After you are comfortable with the mechanics of running containers by hand, it’s recommended to use systemd units to run a container on a Container Linux machine.

Do not run containers with detached mode inside of systemd unit files. Detached mode prevents your init system, in our case systemd, from monitoring the process that owns the container because detached mode forks it into the background. To prevent this issue, just omit the -d flag if you aren’t running something manually.




Run Apache in foreground

We need to run the apache process in the foreground, since our container will stop when the process specified in the docker run command stops. We can do this with a flag -D when starting the apache2 process:

/usr/sbin/apache2ctl -D FOREGROUND





Let’s add that to our command:

docker run -d coreos/apache /usr/sbin/apache2ctl -D FOREGROUND








Permanently running a container

While the sections above explained how to run a container when configuring it, for a production setup, you should not manually start and babysit containers.

Instead, create a systemd unit file to make systemd keep that container running. See the Getting Started with systemd for details.




Network access to 80

The default apache install will be running on port 80. To give our container access to traffic over port 80, we use the -p flag and specify the port on the host that maps to the port inside the container. In our case we want 80 for each, so we include -p 80:80 in our command:

docker run -d -p 80:80 coreos/apache /usr/sbin/apache2ctl -D FOREGROUND





You can now run this command on your Container Linux host to create the container. You should see the default apache webpage when you load either localhost:80 or the IP of your remote server. Be sure that any firewall or EC2 Security Group allows traffic to port 80.






Using the Docker registry

Earlier we downloaded the ubuntu image remotely from the Docker public registry because it didn’t exist on our local machine. We can also push local images to the public registry (or a private registry) very easily with the push command:

docker push coreos/apache





To push to a private repository the syntax is very similar. First, we must prefix our image with the host running our private registry instead of our username. List images by running docker images and insert the correct ID into the tag command:

docker tag f455ea72d468 registry.example.com:5000/apache





After tagging, the image needs to be pushed to the registry:

docker push registry.example.com:5000/apache





Once the image is done uploading, you should be able to start the exact same container on a different Container Linux host by running:

docker run -d -p 80:80 registry.example.com:5000/apache /usr/sbin/apache2ctl -D FOREGROUND








More information

Docker Overview
Docker Website
docker’s Getting Started Guide







          

      

      

    

  

  
    
    Getting started with systemd
    

    
 
  

    
      
          
            
  
Getting started with systemd

systemd is an init system that provides many powerful features for starting, stopping, and managing processes. Within Container Linux, you will almost exclusively use systemd to manage the lifecycle of your Docker containers.


Terminology

systemd consists of two main concepts: a unit and a target. A unit is a configuration file that describes the properties of the process that you’d like to run. This is normally a docker run command or something similar. A target is a grouping mechanism that allows systemd to start up groups of processes at the same time. This happens at every boot as processes are started at different run levels.

systemd is the first process started on Container Linux and it reads different targets and starts the processes specified which allows the operating system to start. The target that you’ll interact with is the multi-user.target which holds all of the general use unit files for our containers.

Each target is actually a collection of symlinks to our unit files. This is specified in the unit file by WantedBy=multi-user.target. Running systemctl enable foo.service creates symlinks to the unit inside multi-user.target.wants.




Unit file

On Container Linux, unit files are located at /etc/systemd/system. Let’s create a simple unit named hello.service:

[Unit]
Description=MyApp
After=docker.service
Requires=docker.service

[Service]
TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill busybox1
ExecStartPre=-/usr/bin/docker rm busybox1
ExecStartPre=/usr/bin/docker pull busybox
ExecStart=/usr/bin/docker run --name busybox1 busybox /bin/sh -c "trap 'exit 0' INT TERM; while true; do echo Hello World; sleep 1; done"

[Install]
WantedBy=multi-user.target





The Description shows up in the systemd log and a few other places. Write something that will help you understand exactly what this does later on.

After=docker.service and Requires=docker.service means this unit will only start after docker.service is active. You can define as many of these as you want.

ExecStart= allows you to specify any command that you’d like to run when this unit is started. The pid assigned to this process is what systemd will monitor to determine whether the process has crashed or not. Do not run docker containers with -d as this will prevent the container from starting as a child of this pid. systemd will think the process has exited and the unit will be stopped.

WantedBy= is the target that this unit is a part of.

To start a new unit, we need to tell systemd to create the symlink and then start the file:

$ sudo systemctl enable /etc/systemd/system/hello.service
$ sudo systemctl start hello.service





To verify the unit started, you can see the list of containers running with docker ps and read the unit’s output with journalctl:

$ journalctl -f -u hello.service
-- Logs begin at Fri 2014-02-07 00:05:55 UTC. --
Feb 11 17:46:26 localhost docker[23470]: Hello World
Feb 11 17:46:27 localhost docker[23470]: Hello World
Feb 11 17:46:28 localhost docker[23470]: Hello World
...





Overview of systemctl
Reading the System Log




Advanced unit files

systemd provides a high degree of functionality in your unit files. Here’s a curated list of useful features listed in the order they’ll occur in the lifecycle of a unit:

| Name    | Description |
|———|————-|
| ExecStartPre | Commands that will run before ExecStart. |
| ExecStart | Main commands to run for this unit. |
| ExecStartPost | Commands that will run after all ExecStart commands have completed. |
| ExecReload | Commands that will run when this unit is reloaded via systemctl reload foo.service |
| ExecStop | Commands that will run when this unit is considered failed or if it is stopped via systemctl stop foo.service |
| ExecStopPost | Commands that will run after ExecStop has completed. |
| RestartSec | The amount of time to sleep before restarting a service. Useful to prevent your failed service from attempting to restart itself every 100ms. |

The full list is located on the systemd man page [http://www.freedesktop.org/software/systemd/man/systemd.service.html].

Let’s put a few of these concepts together to register new units within etcd. Imagine we had another container running that would read these values from etcd and act upon them.

We can use ExecStartPre to scrub existing container state. The docker kill will force any previous copy of this container to stop, which is useful if we restarted the unit but Docker didn’t stop the container for some reason. The =- is systemd syntax to ignore errors for this command. We need to do this because Docker will return a non-zero exit code if we try to stop a container that doesn’t exist. We don’t consider this an error (because we want the container stopped) so we tell systemd to ignore the possible failure.

docker rm will remove the container and docker pull will pull down the latest version. You can optionally pull down a specific version as a Docker tag: coreos/apache:1.2.3

ExecStart is where the container is started from the container image that we pulled above.

Since our container will be started in ExecStart, it makes sense for our etcd command to run as ExecStartPost to ensure that our container is started and functioning.

When the service is told to stop, we need to stop the Docker container using its --name from the run command. We also need to clean up our etcd key when the container exits or the unit is failed by using ExecStopPost.

[Unit]
Description=My Advanced Service
After=etcd2.service
After=docker.service

[Service]
TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill apache1
ExecStartPre=-/usr/bin/docker rm apache1
ExecStartPre=/usr/bin/docker pull coreos/apache
ExecStart=/usr/bin/docker run --name apache1 -p 8081:80 coreos/apache /usr/sbin/apache2ctl -D FOREGROUND
ExecStartPost=/usr/bin/etcdctl set /domains/example.com/10.10.10.123:8081 running
ExecStop=/usr/bin/docker stop apache1
ExecStopPost=/usr/bin/etcdctl rm /domains/example.com/10.10.10.123:8081

[Install]
WantedBy=multi-user.target





While it’s possible to manage the starting, stopping, and removal of the container in a single ExecStart command by using docker run --rm, it’s a good idea to separate the container’s lifecycle into ExecStartPre, ExecStart, and ExecStop options as we’ve done above. This gives you a chance to inspect the container’s state after it stops or fails.




Unit specifiers

In our last example we had to hardcode our IP address when we announced our container in etcd. That’s not scalable and systemd has a few variables built in to help us out. Here’s a few of the most useful:

| Variable | Meaning | Description |
|———-|———|————-|
| %n | Full unit name | Useful if the name of your unit is unique enough to be used as an argument on a command. |
| %m | Machine ID | Useful for namespacing etcd keys by machine. Example: /machines/%m/units |
| %b | BootID | Similar to the machine ID, but this value is random and changes on each boot |
| %H | Hostname | Allows you to run the same unit file across many machines. Useful for service discovery. Example: /domains/example.com/%H:8081 |

A full list of specifiers can be found on the systemd man page [http://www.freedesktop.org/software/systemd/man/systemd.unit.html#Specifiers].




Instantiated units

Since systemd is based on symlinks, there are a few interesting tricks you can leverage that are very powerful when used with containers. If you create multiple symlinks to the same unit file, the following variables become available to you:

| Variable | Meaning | Description |
|———-|———|————-|
| %p | Prefix name | Refers to any string before @ in your unit name. |
| %i | Instance name | Refers to the string between the @ and the suffix. |

In our earlier example we had to hardcode our IP address when registering within etcd:

ExecStartPost=/usr/bin/etcdctl set /domains/example.com/10.10.10.123:8081 running





We can enhance this by using %H and %i to dynamically announce the hostname and port. Specify the port after the @ by using two unit files named foo@123.service and foo@456.service:

ExecStartPost=/usr/bin/etcdctl set /domains/example.com/%H:%i running





This gives us the flexibility to use a single unit file to announce multiple copies of the same container on a single machine (no port overlap) and on multiple machines (no hostname overlap).




More information

systemd.service Docs
systemd.unit Docs
systemd.target Docs







          

      

      

    

  

  
    
    CoreOS Container Linux hardening guide
    

    
 
  

    
      
          
            
  
CoreOS Container Linux hardening guide

This guide covers the basics of securing a Container Linux instance. Container Linux has a very slim network profile and the only service that listens by default on Container Linux is sshd on port 22 on all interfaces. There are also some defaults for local users and services that should be considered.


Remote listening services


Disabling sshd

To disable sshd from listening you can stop the socket:

systemctl mask sshd.socket --now





If you wish to make further customizations see our customize sshd guide.






Remote non-listening services


etcd and Locksmith

etcd and Locksmith should be secured and authenticated using TLS if you are using these services. Please see the relevant guides for details.


	etcd security guide [https://github.com/coreos/etcd/blob/v3.2.11/Documentation/op-guide/security]









Local services


Local users

Container Linux has a single default user account called “core”. Generally this user is the one that gets ssh keys added to it via a Container Linux Config for administrators to login. The core user, by default, has access to the wheel group which grants sudo access. You can change this by removing the core user from wheel by running this command: gpasswd -d core wheel.




Docker daemon

The docker daemon is accessible via a unix domain socket at /run/docker.sock. Users in the “docker” group have access to this service and access to the docker socket grants similar capabilities to sudo. The core user, by default, has access to the docker group. You can change this by removing the core user from docker by running this command: gpasswd -d core docker.




rkt fetch

Users in the “rkt” group have access to the rkt container image store. A user may download new images and place them in the store if they belong to this group. This could be used as an attack vector to insert images that are later executed as root by the rkt container runtime. The core user, by default, has access to the rkt group. You can change this by removing the core user from rkt by running this command: gpasswd -d core rkt.






Additional hardening


Disabling Simultaneous Multi-Threading

Recent Intel CPU vulnerabilities cannot be fully mitigated in software without disabling Simultaneous Multi-Threading. This can have a substantial performance impact and is only necessary for certain workloads, so for compatibility reasons, SMT is enabled by default.

The SMT on Container Linux guide provides guidance and instructions for disabling SMT.




SELinux

SELinux is a fine-grained access control mechanism integrated into Container Linux. Each container runs in its own independent SELinux context, increasing isolation between containers and providing another layer of protection should a container be compromised.

Container Linux implements SELinux, but currently does not enforce SELinux protections by default. The SELinux on Container Linux guide covers the process of checking containers for SELinux policy compatibility and switching SELinux into enforcing mode.









          

      

      

    

  

  
    
    Install debugging tools
    

    
 
  

    
      
          
            
  
Install debugging tools

You can use common debugging tools like tcpdump or strace with Toolbox. Using the filesystem of a specified Docker container Toolbox will launch a container with full system privileges including access to system PIDs, network interfaces and other global information. Inside of the toolbox, the machine’s filesystem is mounted to /media/root.


Quick debugging

By default, Toolbox uses the stock Fedora Docker container. To start using it, simply run:

/usr/bin/toolbox





You’re now in the namespace of Fedora and can install any software you’d like via dnf. For example, if you’d like to use tcpdump:

[root@srv-3qy0p ~]# dnf -y install tcpdump
[root@srv-3qy0p ~]# tcpdump -i ens3
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on ens3, link-type EN10MB (Ethernet), capture size 65535 bytes






Specify a custom Docker image

Create a .toolboxrc in the user’s home folder to use a specific Docker image:

$ cat .toolboxrc
TOOLBOX_DOCKER_IMAGE=index.example.com/debug
TOOLBOX_USER=root
$ /usr/bin/toolbox
Pulling repository index.example.com/debug
...





You can also specify this in a Container Linux Config:

storage:
  files:
    - path: /home/core/.toolboxrc
      filesystem: root
      mode: 0644
      contents:
        inline: |
          TOOLBOX_DOCKER_IMAGE=index.example.com/debug
          TOOLBOX_DOCKER_TAG=v1
          TOOLBOX_USER=root










Under the hood

Behind the scenes, toolbox downloads, prepares and exports the container
image you specify (or the default fedora image), then creates a container
from that extracted image by calling systemd-nspawn.  The exported
image is retained in
/var/lib/toolbox/[username]-[image name]-[image tag], e.g. the default
image run by the core user is at /var/lib/toolbox/core-fedora-latest.

This means two important things:


	Changes made inside the container will persist between sessions


	The container filesystem will take up space on disk (a few hundred MiB
for the default fedora container)







SSH directly into a toolbox

Advanced users can SSH directly into a toolbox by setting up an /etc/passwd entry:

useradd bob -m -p '*' -s /usr/bin/toolbox -U -G sudo,docker,rkt





To test, SSH as bob:

ssh bob@hostname.example.com

   ______                ____  _____
  / ____/___  ________  / __ \/ ___/
 / /   / __ \/ ___/ _ \/ / / /\__ \
/ /___/ /_/ / /  /  __/ /_/ /___/ /
\____/\____/_/   \___/\____//____/
[root@srv-3qy0p ~]# dnf -y install emacs-nox
[root@srv-3qy0p ~]# emacs /media/root/etc/systemd/system/newapp.service











          

      

      

    

  

  
    
    Installing CoreOS Container Linux to disk
    

    
 
  

    
      
          
            
  
Installing CoreOS Container Linux to disk


Install script

There is a simple installer that will destroy everything on the given target disk and install Container Linux. Essentially it downloads an image, verifies it with gpg, and then copies it bit for bit to disk. An installation requires at least 8 GB of usable space on the device.

The script is self-contained and located on GitHub here [https://raw.github.com/coreos/init/master/bin/coreos-install] and can be run from any Linux distribution. You cannot normally install Container Linux to the same device that is currently booted. However, the Container Linux ISO or any Linux liveCD will allow Container Linux to install to a non-active device.

If you boot Container Linux via PXE, the install script is already installed. By default the install script will attempt to install the same version and channel that was PXE-booted:

coreos-install -d /dev/sda -i ignition.json





ignition.json should include user information (especially an SSH key) generated from a Container Linux Config, or you will not be able to log into your Container Linux instance.

If you are installing on VMware, pass -o vmware_raw to install the VMware-specific image:

coreos-install -d /dev/sda -i ignition.json -o vmware_raw








Choose a channel

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates] with different schedules per channel. You can disable this feature, although we don’t recommend it. Read the release notes [https://coreos.com/releases] for specific features and bug fixes.


  
    	Stable Channel

    	Beta Channel

    	Alpha Channel

  

  
    
      The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux {{site.alpha-channel}}.

      If you want to ensure you are installing the latest alpha version, use the -C option:

      coreos-install -d /dev/sda -C alpha

    

    
      The Beta channel consists of promoted Alpha releases. The current version is Container Linux {{site.beta-channel}}.

      If you want to ensure you are installing the latest beta version, use the -C option:

      coreos-install -d /dev/sda -C beta

    

    
      The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux {{site.stable-channel}}.

      If you want to ensure you are installing the latest stable version, use the -C option:

      coreos-install -d /dev/sda -C stable

    

  


For reference here are the rest of the coreos-install options:

-d DEVICE   Install Container Linux to the given device.
-V VERSION  Version to install (e.g. current)
-B BOARD    Container Linux board to use
-C CHANNEL  Release channel to use (e.g. beta)
-o OEM      OEM type to install (e.g. ami)
-c CLOUD    Insert a cloud-init config to be executed on boot.
-i IGNITION Insert an Ignition config to be executed on boot.
-b BASEURL  URL to the image mirror (overrides BOARD)
-k KEYFILE  Override default GPG key for verifying image signature
-f IMAGE    Install unverified local image file to disk instead of fetching
-n          Copy generated network units to the root partition.
-v          Super verbose, for debugging.








Container Linux Configs

By default there isn’t a password or any other way to log into a fresh Container Linux system. The easiest way to configure accounts, add systemd units, and more is via Container Linux Configs. Jump over to the docs to learn about the supported features.

After using the Container Linux Config Transpiler [https://github.com/coreos/container-linux-config-transpiler/blob/master/doc/overview] to produce an Ignition config, the installation script will process your ignition.json file specified with the -i flag and use it when the installation is booted.

A Container Linux Config that specifies an SSH key for the core user but doesn’t use any other parameters looks like:

passwd:
  users:
    - name: core
      ssh_authorized_keys:
        - ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDGdByTgSVHq.......





Note: The {PRIVATE_IPV4} and {PUBLIC_IPV4} substitution variables referenced in other documents are not supported on libvirt.

To start the installation script with a reference to our Ignition config, run:

coreos-install -d /dev/sda -C stable -i ~/ignition.json






Advanced Container Linux Config example

This example will configure Container Linux components: etcd and flannel. You have to substitute <PEER_ADDRESS> to your host’s IP or DNS address.

passwd:
  users:
    - name: core
      ssh_authorized_keys:
        - ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDGdByTgSVHq.......
etcd:
  # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
  # specify the initial size of your cluster with ?size=X
  discovery: https://discovery.etcd.io/<token>
  advertise_client_urls: http://<PEER_ADDRESS>:2379,http://<PEER_ADDRESS>:4001
  initial_advertise_peer_urls: http://<PEER_ADDRESS>:2380
  # listen on both the official ports and the legacy ports
  # legacy ports can be omitted if your application doesn't depend on them
  listen_client_urls: http://0.0.0.0:2379,http://0.0.0.0:4001
  listen_peer_urls: http://<PEER_ADDRESS>:2380
systemd:
  units:
    - name: flanneld.service
      enable: true
      dropins:
      - name: 50-network-config.conf
        contents: |
          [Service]
          ExecStartPre=/usr/bin/etcdctl set /coreos.com/network/config '{"Network":"10.1.0.0/16", "Backend": {"Type": "vxlan"}}'










Using CoreOS Container Linux

Now that you have a machine booted it is time to play around. Check out the Container Linux Quickstart guide or dig into more specific topics [https://github.com/coreos/docs].







          

      

      

    

  

  
    
    Integrations
    

    
 
  

    
      
          
            
  
Integrations

This document tracks projects that integrate with Container Linux. Join the community [https://github.com/coreos/docs/], and help us keep the list current.


Projects

Deis Workflow [https://deis.com/workflow/]: an open source PaaS for Kubernetes that runs on Container Linux.

Amazon Web Services [https://aws.amazon.com/marketplace/pp/B01H62FDJM]: Amazon’s cloud computing solution. Offers Container Linux.

Google Cloud Platform [https://cloud.google.com/compute/docs/images#os-compute-support]: Google’s cloud computing solution. Offers Container Linux.

Microsoft Azure [https://azuremarketplace.microsoft.com/en-us/marketplace/apps/category/compute?subcategories=operating-systems&page=1#]: Microsoft’s cloud computing solution. Offers Container Linux.

DigitalOcean [https://www.digitalocean.com/products/linux-distribution/coreos/]: An independent cloud computing solution. Offers Container Linux.

Packet [https://www.packet.net/promo/coreos/]: A hosted bare metal solution. Offers Container Linux.







          

      

      

    

  

  
    
    iSCSI on CoreOS Container Linux
    

    
 
  

    
      
          
            
  
iSCSI on CoreOS Container Linux

iSCSI [https://en.wikipedia.org/wiki/ISCSI] is a protocol which provides block-level access to storage devices over IP.
This allows applications to treat remote storage devices as if they were local disks.
iSCSI handles taking requests from clients and carrying them out on the remote SCSI devices.

Container Linux has integrated support for mounting devices.
This guide covers iSCSI configuration manually or automatically with Container Linux Configs.


Manual iSCSI configuration


Set the CoreOS Container Linux iSCSI initiator name

iSCSI clients each have a unique initiator name.
Container Linux generates a unique initiator name on each install and stores it in /etc/iscsi/initiatorname.iscsi.
This may be replaced if necessary.




Configure the global iSCSI credentials

If all iSCSI mounts on a Container Linux system use the same credentials, these may be configured locally by editing /etc/iscsi/iscsid.conf and setting the node.session.auth.username and node.session.auth.password fields.
If the iSCSI target is configured to support mutual authentication (allowing the initiator to verify that it is speaking to the correct client), these should be set in node.session.auth.username_in and node.session.auth.password_in.




Start the iSCSI daemon

systemctl start iscsid








Discover available iSCSI targets

To discover targets, run:

$ iscsiadm -m discovery -t sendtargets -p target_ip:target_port








Provide target-specific credentials

For each unique --targetname, first enter the username:

$ iscsiadm -m node \
  --targetname=custom_target \
  --op update \
  --name=node.session.auth.username \
  --value=my_username





And then the password:

$ iscsiadm -m node \
  --targetname=custom_target \
  --op update \
  --name=node.session.auth.password \
  --value=my_secret_passphrase








Log into an iSCSI target

The following command will log into all discovered targets.

$ iscsiadm -m node --login





Then, to log into a specific target use:

$ iscsiadm -m node --targetname=custom_target --login








Enable automatic iSCSI login at boot

If you want to connect to iSCSI targets automatically at boot you first need to enable the systemd service:

$ systemctl enable iscsid










Automatic iSCSI configuration

To configure and start iSCSI automatically after a machine is provisioned, credentials need to be written to disk and the iSCSI service started.

A Container Linux Config will be used to write the file /etc/iscsi/iscsid.conf to disk:


/etc/iscsi/iscsid.conf

isns.address = host_ip
isns.port = host_port
node.session.auth.username = my_username
node.session.auth.password = my_secret_password
discovery.sendtargets.auth.username = my_username
discovery.sendtargets.auth.password = my_secret_password








The Container Linux Config

systemd:
  units:
    - name: iscsid.service
      enable: true
storage:
  files:
    - path: /etc/iscsi/iscsid.conf
      filesystem: root
      mode: 0644
      contents:
        inline: |
          isns.address = host_ip
          isns.port = host_port
          node.session.auth.username = my_username
          node.session.auth.password = my_secret_password
          discovery.sendtargets.auth.username = my_username
          discovery.sendtargets.auth.password = my_secret_password










Mounting iSCSI targets

See the mounting storage docs for an example.







          

      

      

    

  

  
    
    Building custom kernel modules
    

    
 
  

    
      
          
            
  
Building custom kernel modules


Create a writable overlay

The kernel modules directory /lib/modules is read-only on Container Linux. A writable overlay can be mounted over it to allow installing new modules.

modules=/opt/modules  # Adjust this writable storage location as needed.
sudo mkdir -p "$modules" "$modules.wd"
sudo mount \
    -o "lowerdir=/lib/modules,upperdir=$modules,workdir=$modules.wd" \
    -t overlay overlay /lib/modules





To mount the overlay automatically when the system boots, add the following line to /etc/fstab (creating it if necessary).

overlay /lib/modules overlay lowerdir=/lib/modules,upperdir=/opt/modules,workdir=/opt/modules.wd,nofail 0 0








Prepare a CoreOS Container Linux development container

Read system configuration files to determine the URL of the development container that corresponds to the current Container Linux version.

. /usr/share/coreos/release
. /usr/share/coreos/update.conf
url="http://${GROUP:-stable}.release.core-os.net/$COREOS_RELEASE_BOARD/$COREOS_RELEASE_VERSION/coreos_developer_container.bin.bz2"





Download, decompress, and verify the development container image.

gpg2 --recv-keys 04127D0BFABEC8871FFB2CCE50E0885593D2DCB4  # Fetch the buildbot key if neccesary.
curl -L "$url" |
    tee >(bzip2 -d > coreos_developer_container.bin) |
    gpg2 --verify <(curl -Ls "$url.sig") -





Start the development container with the host’s writable modules directory mounted into place.

sudo systemd-nspawn \
    --bind=/lib/modules \
    --image=coreos_developer_container.bin





Now, inside the container, fetch the Container Linux package definitions, then download and prepare the Linux kernel source for building external modules.

emerge-gitclone
emerge -gKv coreos-sources
gzip -cd /proc/config.gz > /usr/src/linux/.config
make -C /usr/src/linux modules_prepare








Build and install kernel modules

At this point, upstream projects’ instructions for building their out-of-tree modules should work in the Container Linux development container. New kernel modules should be installed into /lib/modules, which is bind-mounted from the host, so they will be available on future boots without using the container again.

In case the installation step didn’t update the module dependency files automatically, running the following command will ensure commands like modprobe function correctly with the new modules.

sudo depmod











          

      

      

    

  

  
    
    Performing manual CoreOS Container Linux rollbacks
    

    
 
  

    
      
          
            
  
Performing manual CoreOS Container Linux rollbacks

In the event of an upgrade failure, Container Linux will automatically boot with the version on the rollback partition. Immediately after an upgrade reboot, the active version of Container Linux can be rolled back to the version installed on the rollback partition, or downgraded to the version current on any lower release channel. There is no method to downgrade to an arbitrary version number.

This section describes the automated upgrade process, performing a manual rollback, and forcing a channel downgrade.

Note: Neither performing a manual rollback nor forcing a channel downgrade are recommended.


How do updates work?

The system’s GPT tables are used to encode which partition is currently active and which is passive. This can be seen using the cgpt command.

$ cgpt show /dev/sda
       start        size    part  contents
           0           1          Hybrid MBR
           1           1          Pri GPT header
           2          32          Pri GPT table
        4096      262144       1  Label: "EFI-SYSTEM"
                                  Type: EFI System Partition
                                  UUID: 596FF08E-5617-4497-B10B-27A23F658B73
                                  Attr: Legacy BIOS Bootable
      266240        4096       2  Label: "BIOS-BOOT"
                                  Type: BIOS Boot Partition
                                  UUID: EACCC3D5-E7E9-461D-A6E2-1DCDAE4671EC
      270336     2097152       3  Label: "USR-A"
                                  Type: Alias for coreos-rootfs
                                  UUID: 7130C94A-213A-4E5A-8E26-6CCE9662F132
                                  Attr: priority=2 tries=0 successful=1
     2367488     2097152       4  Label: "USR-B"
                                  Type: Alias for coreos-rootfs
                                  UUID: E03DD35C-7C2D-4A47-B3FE-27F15780A57C
                                  Attr: priority=1 tries=0 successful=0
     4464640      262144       6  Label: "OEM"
                                  Type: Alias for linux-data
                                  UUID: 726E33FA-DFE9-45B2-B215-FB35CD9C2388
     4726784      131072       7  Label: "OEM-CONFIG"
                                  Type: CoreOS reserved
                                  UUID: 8F39CE8B-1FB3-4E7E-A784-0C53C8F40442
     4857856    37085151       9  Label: "ROOT"
                                  Type: CoreOS auto-resize
                                  UUID: D9A972BB-8084-4AB5-BA55-F8A3AFFAD70D
    41943007          32          Sec GPT table
    41943039           1          Sec GPT header





Looking specifically at “USR-A” and “USR-B”, we see that “USR-A” is the active USR partition (this is what’s actually mounted at /usr). Its priority is higher than that of “USR-B”. When the system boots, GRUB (the bootloader) looks at the priorities, tries, and successful flags to determine which partition to use.

      270336     2097152       3  Label: "USR-A"
                                  Type: Alias for coreos-rootfs
                                  UUID: 7130C94A-213A-4E5A-8E26-6CCE9662F132
                                  Attr: priority=2 tries=0 successful=1
     2367488     2097152       4  Label: "USR-B"
                                  Type: Alias for coreos-rootfs
                                  UUID: E03DD35C-7C2D-4A47-B3FE-27F15780A57C
                                  Attr: priority=1 tries=0 successful=0





You’ll notice that on this machine, “USR-B” hasn’t actually successfully booted. Not to worry! This is a fresh machine that hasn’t been through an update cycle yet. When the machine downloads an update, the partition table is updated to allow the newer image to boot.

      270336     2097152       3  Label: "USR-A"
                                  Type: Alias for coreos-rootfs
                                  UUID: 7130C94A-213A-4E5A-8E26-6CCE9662F132
                                  Attr: priority=1 tries=0 successful=1
     2367488     2097152       4  Label: "USR-B"
                                  Type: Alias for coreos-rootfs
                                  UUID: E03DD35C-7C2D-4A47-B3FE-27F15780A57C
                                  Attr: priority=2 tries=1 successful=0





In this case, we see that “USR-B” now has a higher priority and it has one try to successfully boot. Once the machine reboots, the partition table will again be updated.

      270336     2097152       3  Label: "USR-A"
                                  Type: Alias for coreos-rootfs
                                  UUID: 7130C94A-213A-4E5A-8E26-6CCE9662F132
                                  Attr: priority=1 tries=0 successful=1
     2367488     2097152       4  Label: "USR-B"
                                  Type: Alias for coreos-rootfs
                                  UUID: E03DD35C-7C2D-4A47-B3FE-27F15780A57C
                                  Attr: priority=2 tries=0 successful=0





Now we see that the number of tries for “USR-B” has been decremented to zero. The successful flag still hasn’t been updated though. Once update-engine has had a chance to run, it marks the boot as being successful.

      270336     2097152       3  Label: "USR-A"
                                  Type: Alias for coreos-rootfs
                                  UUID: 7130C94A-213A-4E5A-8E26-6CCE9662F132
                                  Attr: priority=1 tries=0 successful=1
     2367488     2097152       4  Label: "USR-B"
                                  Type: Alias for coreos-rootfs
                                  UUID: E03DD35C-7C2D-4A47-B3FE-27F15780A57C
                                  Attr: priority=2 tries=0 successful=1








Performing a manual rollback

So, now that we understand what happens when the machine updates, we can tweak the process so that it boots an older image (assuming it’s still intact on the passive partition). The first command we’ll use is cgpt find -t coreos-usr. This will give us a list of all of the USR partitions available on the disk.

$ cgpt find -t coreos-usr
/dev/sda3
/dev/sda4





To figure out which partition is currently active, we can use rootdev.

$ rootdev -s /usr
/dev/sda4





So now we know that /dev/sda3 is the passive partition on our system. We can compose the previous two commands to dynamically figure out the passive partition.

$ cgpt find -t coreos-usr | grep --invert-match "$(rootdev -s /usr)"
/dev/sda3





In order to rollback, we need to mark that partition as active using cgpt prioritize.

$ cgpt prioritize /dev/sda3





If we take another look at the GPT tables, we’ll see that the priorities have been updated.

      270336     2097152       3  Label: "USR-A"
                                  Type: Alias for coreos-rootfs
                                  UUID: 7130C94A-213A-4E5A-8E26-6CCE9662F132
                                  Attr: priority=2 tries=0 successful=1
     2367488     2097152       4  Label: "USR-B"
                                  Type: Alias for coreos-rootfs
                                  UUID: E03DD35C-7C2D-4A47-B3FE-27F15780A57C
                                  Attr: priority=1 tries=0 successful=1





Composing the previous two commands produces the following command to set the currently passive partition to be active on the next boot:

$ cgpt prioritize "$(cgpt find -t coreos-usr | grep --invert-match "$(rootdev -s /usr)")"








Forcing a Channel Downgrade

The procedure above restores the last known good Container Linux version from immediately before an upgrade reboot. The system remains on the same Container Linux channel after rebooting with the previous USR partition. It is also possible, though not recommended, to switch a Container Linux installation to an older release channel, for example to make a system running an Alpha release downgrade to the Stable channel. Root privileges are required for this procedure, noted by sudo in the commands below.

First, edit /etc/coreos/update.conf to set GROUP to the name of the target channel, one of stable or beta:

GROUP=stable





Next, clear the current version number from the release file so that the target channel will be certain to have a higher version number, triggering the “upgrade,” in this case a downgrade to the lower channel. Since release is on a read-only file system, it is convenient to temporarily override it with a bind mount. To do this, copy the original to a writable location, then bind the copy over the system release file:

$ cp /usr/share/coreos/release /tmp
$ sudo mount -o bind /tmp/release /usr/share/coreos/release





The file is now writable, but the bind mount will not survive the reboot, so that the default read-only system release file will be restored after this procedure is complete. Edit /usr/share/coreos/release to replace the value of COREOS_RELEASE_VERSION with 0.0.0:

COREOS_RELEASE_VERSION=0.0.0





Restart the update service so that it rescans the edited configuration, then initiate an update. The system will reboot into the selected lower channel after downloading the release:

$ sudo systemctl restart update-engine
$ update_engine_client -update











          

      

      

    

  

  
    
    Migrating from Cloud-Config to Container Linux Config
    

    
 
  

    
      
          
            
  
Migrating from Cloud-Config to Container Linux Config

Historically, the recommended way to provision a Container Linux machine was with a cloud-config. This was a YAML file specifying things like systemd units to run, users that should exist, and files that should be written. This file would be given to a Container Linux machine, and saved on disk. Then a utility called coreos-cloudinit running in a systemd unit would read this file, look at the system state, and make necessary changes on every boot.

Going forward, a new method of provisioning with Container Linux Configs is now recommended.

This document details how to convert an existing cloud-config into a Container Linux Config. Once a Container Linux Config has been written, it is given to the Config Transpiler to be converted into an Ignition Config. This Ignition Config can then be provided to a booting machine. For more information on this process, take a look at the provisioning guide.

The etcd and flannel examples shown in this document will use dynamic data in the Container Linux Config (anything looking like this: {PRIVATE_IPV4}). Not all types of dynamic data are supported on all cloud providers, and if the machine is not on a cloud provider this feature cannot be used. Please see here [https://github.com/coreos/container-linux-config-transpiler/blob/master/doc/dynamic-data] for more information.

To see all supported options available in a Container Linux Config, please look at the Container Linux Config schema [https://github.com/coreos/container-linux-config-transpiler/blob/master/doc/configuration].


etcd2

In a cloud-config, etcd version 2 can be enabled and configured by using the coreos.etcd2.* section. As an example of this:

#cloud-config

coreos:
  etcd2:
    discovery:                   "https://discovery.etcd.io/<token>"
    advertise-client-urls:       "http://$public_ipv4:2379"
    initial-advertise-peer-urls: "http://$private_ipv4:2380"
    listen-client-urls:          "http://0.0.0.0:2379,http://0.0.0.0:4001"
    listen-peer-urls:            "http://$private_ipv4:2380,http://$private_ipv4:7001"





etcd can be configured in a more general way with a Container Linux Config. This CL Config will use the etcd-member.service systemd unit rather than the etcd2 service understood by cloud-config and coreos-cloudinit. The etcd-member service will download a version of etcd of the user’s choosing and run it. This means that in a Container Linux Config both etcd v2 and v3 can be configured.

This is done under the etcd section:

etcd:
    version: 3.1.6





Omitting the version specification declares that the unit file should use the version of etcd matching the running version of Container Linux.

Configuration options in this section can be provided the same way as they were in a cloud-config, with the exception of dashes (-) being replaced with underscores (_) in key names.

etcd:
  name:                        "{HOSTNAME}"
  advertise_client_urls:       "{PRIVATE_IPV4}:2379"
  initial_advertise_peer_urls: "{PRIVATE_IPV4}:2380"
  listen_client_urls:          "http://0.0.0.0:2379"
  listen_peer_urls:            "http://{PRIVATE_IPV4}:2380"
  initial_cluster:             "%m=http://{PRIVATE_IPV4}:2380"








flannel

Flannel is easily configurable in a cloud-config the same way etcd is, by using the coreos.flannel.* section.

#cloud-config

coreos:
  flannel:
      etcd_prefix: "/coreos.com/network2"





The flannel section in a Container Linux Config is used the same way, and a version can optionally be specified for flannel as well.

flannel:
  version:     0.7.0
  etcd_prefix: "/coreos.com/network2"








locksmith

The coreos.locksmith.* section in a cloud-config can be used to configure the locksmith daemon via environment variables.

#cloud-config

coreos:
  locksmith:
      endpoint: "http://example.com:2379"





Locksmith can be configured in the same way under the locksmith section of a Container Linux Config, but some of the accepted options are slightly different. Also the reboot strategy is set in the locksmith section, instead of the update section. Check out the Container Linux Config schema [https://github.com/coreos/container-linux-config-transpiler/blob/master/doc/configuration] to see what options are available.

locksmith:
  reboot_strategy: "reboot"
  etcd_endpoints:  "http://example.com:2379"








update

The coreos.update.* section can be used to configure the reboot strategy, update group, and update server in a cloud-config.

#cloud-config
coreos:
  update:
    reboot-strategy: "etcd-lock"
    group:           "stable"
    server:          "https://public.update.core-os.net/v1/update/"





In the update section in a Container Linux Config the group and server can be configured, but the reboot-strategy option has been moved under the locksmith section.

update:
  group:  "stable"
  server: "https://public.update.core-os.net/v1/update/"








units

The coreos.units.* section in a cloud-config can define arbitrary systemd units that should be started after booting.

#cloud-config

coreos:
  units:
    - name: "docker-redis.service"
      command: "start"
      content: |
        [Unit]
        Description=Redis container
        Author=Me
        After=docker.service

        [Service]
        Restart=always
        ExecStart=/usr/bin/docker start -a redis_server
        ExecStop=/usr/bin/docker stop -t 2 redis_server





This section could also be used to define systemd drop-in files for existing units.

#cloud-config

coreos:
  units:
    - name: "docker.service"
      drop-ins:
        - name: "50-insecure-registry.conf"
          content: |
            [Service]
            Environment=DOCKER_OPTS='--insecure-registry="10.0.1.0/24"'





And existing units could also be started without any further configuration.

#cloud-config

coreos:
  units:
    - name: "etcd2.service"
      command: "start"





One big difference in Container Linux Config compared to cloud-configs is that the configuration is applied via Ignition [https://coreos.com/ignition] before the machine has fully booted, as opposed to coreos-cloudinit that runs after the machine has fully booted. As a result units cannot be directly started in a Container Linux Config, the unit is instead enabled so that systemd will begin the unit once systemd starts.

Note: in this example an [Install] section has been added so that the unit can be enabled.

systemd:
  units:
    - name: "docker-redis.service"
      enable: true
      contents: |
        [Unit]
        Description=Redis container
        Author=Me
        After=docker.service

        [Service]
        Restart=always
        ExecStart=/usr/bin/docker start -a redis_server
        ExecStop=/usr/bin/docker stop -t 2 redis_server

        [Install]
        WantedBy=multi-user.target





Drop-in files can be provided for units in a Container Linux Config just like in a cloud-config.

systemd:
  units:
    - name: "docker.service"
      dropins:
        - name: "50-insecure-registry.conf"
          contents: |
            [Service]
            Environment=DOCKER_OPTS='--insecure-registry="10.0.1.0/24"'





Existing units can also be enabled without configuration.

systemd:
  units:
    - name: "etcd-member.service"
      enable: true








ssh_authorized_keys

In a cloud-config the ssh_authorized_keys section can be used to add ssh public keys to the core user.

#cloud-config

ssh_authorized_keys:
  - "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC0g+ZTxC7weoIJLUafOgrm+h..."





In a Container Linux Config there is no analogous section to ssh_authorized_keys, but ssh keys for the core user can be set just as easily using the passwd.users.* section:

passwd:
  users:
    - name: core
      ssh_authorized_keys:
        - "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC0g+ZTxC7weoIJLUafOgrm+h..."








hostname

In a cloud-config the hostname section can be used to set a machine’s hostname.

#cloud-config

hostname: "coreos1"





The Container Linux Config is intentionally more generalized than a cloud-config, and there is no equivalent hostname section understood in a CL Config. Instead, set the hostname by writing it to /etc/hostname in a CL Config storage.files.* section.

storage:
  files:
    - filesystem: "root"
      path:       "/etc/hostname"
      mode:       0644
      contents:
        inline: coreos1








users

The users section in a cloud-config can be used to add users and specify many properties about them, from groups the user should be in to what the user’s shell should be.

#cloud-config

users:
  - name: "elroy"
    passwd: "$6$5s2u6/jR$un0AvWnqilcgaNB3Mkxd5yYv6mTlWfOoCYHZmfi3LDKVltj.E8XNKEcwWm..."
    groups:
      - "sudo"
      - "docker"
    ssh-authorized-keys:
      - "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC0g+ZTxC7weoIJLUafOgrm+h..."





This same information can be added to the Container Linux Config in the passwd.users.* section.

passwd:
  users:
    - name:          "elroy"
      password_hash: "$6$5s2u6/jR$un0AvWnqilcgaNB3Mkxd5yYv6mTlWfOoCYHZmfi3LDKVltj.E8XNKEcwWm..."
      ssh_authorized_keys:
        - "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC0g+ZTxC7weoIJLUafOgrm+h..."
      groups:
        - "sudo"
        - "docker"








write_files

The write_files section in a cloud-config can be used to specify files and their contents that should be written to disk on the machine.

#cloud-config
write_files:
  - path:        "/etc/resolv.conf"
    permissions: "0644"
    owner:       "root"
    content: |
      nameserver 8.8.8.8





This can be done in a Container Linux Config with the storage.files.* section.

storage:
  files:
    - filesystem: "root"
      path:       "/etc/resolv.conf"
      mode:       0644
      contents:
        inline: |
          nameserver 8.8.8.8





File specifications in this section of a CL Config must define the target filesystem and the file’s path relative to the root of that filesystem. This allows files to be written to filesystems other than the root filesystem.

Under the contents section, the file contents are under a sub-section called inline. This is because a file’s contents can be remote by replacing the inline section with a remote section. To see what options are available under the remote section, look at the Container Linux Config schema [https://github.com/coreos/container-linux-config-transpiler/blob/master/doc/configuration].




manage_etc_hosts

The manage_etcd_hosts section in a cloud-config can be used to configure the contents of the /etc/hosts file. Currently only one value is supported, "localhost", which will cause your system’s hostname to resolve to 127.0.0.1.

#cloud-config

manage_etc_hosts: "localhost"





There is no analogous section in a Container Linux Config, however the /etc/hosts file can be written in the storage.files.* section.

storage:
  files:
    - filesystem: "root"
      path:       "/etc/hosts"
      mode:       0644
      contents:
        inline: |
          127.0.0.1	localhost
          ::1		localhost
          127.0.0.1 example.com











          

      

      

    

  

  
    
    Mounting storage
    

    
 
  

    
      
          
            
  
Mounting storage

Container Linux Configs can be used to format and attach additional filesystems to Container Linux nodes, whether such storage is provided by an underlying cloud platform, physical disk, SAN, or NAS system. This is done by specifying how partitions should be mounted in the config, and then using a systemd mount unit to mount the partition. By systemd convention [http://www.freedesktop.org/software/systemd/man/systemd.mount.html], mount unit names derive from the target mount point, with interior slashes replaced by dashes, and the .mount extension appended. A unit mounting onto /var/www is thus named var-www.mount.

Mount units name the source filesystem and target mount point, and optionally the filesystem type. Systemd mounts filesystems defined in such units at boot time. The following example formats an EC2 ephemeral disk and then mounts it at the node’s /media/ephemeral directory. The mount unit is therefore named media-ephemeral.mount.

storage:
  filesystems:
    - name: ephemeral1
      mount:
        device: /dev/xvdb
        format: ext4
        wipe_filesystem: true
systemd:
  units:
    - name: media-ephemeral.mount
      enable: true
      contents: |
        [Unit]
        Before=local-fs.target
        [Mount]
        What=/dev/xvdb
        Where=/media/ephemeral
        Type=ext4
        [Install]
        WantedBy=local-fs.target






Use attached storage for Docker

Docker containers can be very large and debugging a build process makes it easy to accumulate hundreds of containers. It’s advantageous to use attached storage to expand your capacity for container images. Be aware that some cloud providers treat certain disks as ephemeral and you will lose all Docker images contained on that disk.

We’re going to format a device as ext4 and then mount it to /var/lib/docker, where Docker stores images. Be sure to hardcode the correct device or look for a device by label:

storage:
  filesystems:
    - name: ephemeral1
      mount:
        device: /dev/xvdb
        format: ext4
        wipe_filesystem: true
systemd:
  units:
    - name: var-lib-docker.mount
      enable: true
      contents: |
        [Unit]
        Description=Mount ephemeral to /var/lib/docker
        Before=local-fs.target
        [Mount]
        What=/dev/xvdb
        Where=/var/lib/docker
        Type=ext4
        [Install]
        WantedBy=local-fs.target
    - name: docker.service
      dropins:
        - name: 10-wait-docker.conf
          contents: |
            [Unit]
            After=var-lib-docker.mount
            Requires=var-lib-docker.mount








Creating and mounting a btrfs volume file

Container Linux uses ext4 + overlayfs to provide a layered filesystem for the root partition. If you’d like to use btrfs for your Docker containers, you can do so with two systemd units: one that creates and formats a btrfs volume file and another that mounts it.

In this example, we are going to mount a new 25GB btrfs volume file to /var/lib/docker. One can verify that Docker is using the btrfs storage driver once the Docker service has started by executing sudo docker info. We recommend allocating no more than 85% of the available disk space for a btrfs filesystem as journald will also require space on the host filesystem.

systemd:
  units:
    - name: format-var-lib-docker.service
      contents: |
        [Unit]
        Before=docker.service var-lib-docker.mount
        RequiresMountsFor=/var/lib
        ConditionPathExists=!/var/lib/docker.btrfs
        [Service]
        Type=oneshot
        ExecStart=/usr/bin/truncate --size=25G /var/lib/docker.btrfs
        ExecStart=/usr/sbin/mkfs.btrfs /var/lib/docker.btrfs
    - name: var-lib-docker.mount
      enable: true
      contents: |
        [Unit]
        Before=docker.service
        After=format-var-lib-docker.service
        Requires=format-var-lib-docker.service
        [Mount]
        What=/var/lib/docker.btrfs
        Where=/var/lib/docker
        Type=btrfs
        Options=loop,discard
        [Install]
        RequiredBy=docker.service





Note the declaration of ConditionPathExists=!/var/lib/docker.btrfs. Without this line, systemd would reformat the btrfs filesystem every time the machine starts.




Mounting NFS exports

This Container Linux Config excerpt mounts an NFS export onto the Container Linux node’s /var/www.

systemd:
  units:
    - name: var-www.mount
      enable: true
      contents: |
        [Unit]
        Before=remote-fs.target
        [Mount]
        What=nfs.example.com:/var/www
        Where=/var/www
        Type=nfs
        [Install]
        WantedBy=remote-fs.target





To declare that another service depends on this mount, name the mount unit in the dependent unit’s After and Requires properties:

[Unit]
After=var-www.mount
Requires=var-www.mount





If the mount fails, dependent units will not start.




Further reading

Check the systemd mount docs [http://www.freedesktop.org/software/systemd/man/systemd.mount.html] to learn about the available options. Examples specific to EC2, Google Compute Engine and Rackspace Cloud can be used as a starting point.







          

      

      

    

  

  
    
    Network configuration with networkd
    

    
 
  

    
      
          
            
  
Network configuration with networkd

Container Linux machines are preconfigured with networking customized for each platform. You can write your own networkd units to replace or override the units created for each platform. This article covers a subset of networkd functionality. You can view the full docs here [http://www.freedesktop.org/software/systemd/man/systemd-networkd.service.html].

Drop a networkd unit in /etc/systemd/network/ or inject a unit on boot via a Container Linux Config. Files placed manually on the filesystem will need to reload networkd afterwards with sudo systemctl restart systemd-networkd. Network units injected via a Container Linux Config will be written to the system before networkd is started, so there are no work-arounds needed.

Let’s take a look at two common situations: using a static IP and turning off DHCP.


Static networking

To configure a static IP on enp2s0, create static.network:

[Match]
Name=enp2s0

[Network]
Address=192.168.0.15/24
Gateway=192.168.0.1
DNS=1.2.3.4





Place the file in /etc/systemd/network/. To apply the configuration, run:

sudo systemctl restart systemd-networkd






Container Linux Config

Setting up static networking in your Container Linux Config can be done by writing out the network unit. Be sure to modify the [Match] section with the name of your desired interface, and replace the IPs:

networkd:
  units:
    - name: 00-eth0.network
      contents: |
        [Match]
        Name=eth0

        [Network]
        DNS=1.2.3.4
        Address=10.0.0.101/24
        Gateway=10.0.0.1










Turn off DHCP on specific interface

If you’d like to use DHCP on all interfaces except enp2s0, create two files. They’ll be checked in lexical order, as described in the full network docs [http://www.freedesktop.org/software/systemd/man/systemd-networkd.service.html]. Any interfaces matching during earlier files will be ignored during later files.


10-static.network

[Match]
Name=enp2s0

[Network]
Address=192.168.0.15/24
Gateway=192.168.0.1
DNS=1.2.3.4





Put your settings-of-last-resort in 20-dhcp.network. For example, any interfaces matching en* that weren’t matched in 10-static.network will be configured with DHCP:




20-dhcp.network

[Match]
Name=en*

[Network]
DHCP=yes





To apply the configuration, run sudo systemctl restart systemd-networkd. Check the status with systemctl status systemd-networkd and read the full log with journalctl -u systemd-networkd.






Turn off IPv6 on specific interfaces

While IPv6 can be disabled globally at boot by appending ipv6.disable=1 to the kernel command line, networkd supports disabling IPv6 on a per-interface basis. When a network unit’s [Network] section has either LinkLocalAddressing=ipv4 or LinkLocalAddressing=no, networkd will not try to configure IPv6 on the matching interfaces.

Note however that even when using the above option, networkd will still be expecting to receive router advertisements if IPv6 is not disabled globally. If IPv6 traffic is not being received by the interface (e.g. due to sysctl or ip6tables settings), it will remain in the configuring state and potentially cause timeouts for services waiting for the network to be fully configured. To avoid this, the IPv6AcceptRA=no option should also be set in the [Network] section.

A network unit file’s [Network] section should therefore contain the following to disable IPv6 on its matching interfaces.

[Network]
LinkLocalAddressing=no
IPv6AcceptRA=no








Configure static routes

Specify static routes in a systemd network unit’s [Route] section. In this example, we create a unit file, 10-static.network, and define in it a static route to the 172.16.0.0/24 subnet:


10-static.network

[Route]
Gateway=192.168.122.1
Destination=172.16.0.0/24





To specify the same route in a Container Linux Config, create the systemd network unit there instead:

networkd:
  units:
    - name: 10-static.network
      contents: |
        [Route]
        Gateway=192.168.122.1
        Destination=172.16.0.0/24










Configure multiple IP addresses

To configure multiple IP addresses on one interface, we define multiple Address keys in the network unit. In the example below, we’ve also defined a different gateway for each IP address.


20-multi_ip.network

[Match]
Name=eth0

[Network]
DNS=8.8.8.8
Address=10.0.0.101/24
Gateway=10.0.0.1
Address=10.0.1.101/24
Gateway=10.0.1.1





To do the same thing through a Container Linux Config:

networkd:
  units:
    - name: 20-multi_ip.network
      contents: |
        [Match]
        Name=eth0

        [Network]
        DNS=8.8.8.8
        Address=10.0.0.101/24
        Gateway=10.0.0.1
        Address=10.0.1.101/24
        Gateway=10.0.1.1










Debugging networkd

If you’ve faced some problems with networkd you can enable debug mode following the instructions below.


Enable debugging manually

mkdir -p /etc/systemd/system/systemd-networkd.service.d/





Create Drop-In /etc/systemd/system/systemd-networkd.service.d/10-debug.conf with following content:

[Service]
Environment=SYSTEMD_LOG_LEVEL=debug





And restart systemd-networkd service:

systemctl daemon-reload
systemctl restart systemd-networkd
journalctl -b -u systemd-networkd








Enable debugging through a Container Linux Config

Define a Drop-In in a Container Linux Config:

systemd:
  units:
    - name: systemd-networkd.service
      dropins:
        - name: 10-debug.conf
          contents: |
            [Service]
            Environment=SYSTEMD_LOG_LEVEL=debug










Further reading

If you’re interested in more general networkd features, check out the full documentation [http://www.freedesktop.org/software/systemd/man/systemd-networkd.service.html].

Getting Started with systemd
Reading the System Log







          

      

      

    

  

  
    
    Hosting cloud-config using nginx
    

    
 
  

    
      
          
            
  
Hosting cloud-config using nginx

The nginx HTTP server can be used to serve cloud-config files to booting Container Linux machines. With the addition of the http_sub_module [http://nginx.org/en/docs/http/ngx_http_sub_module.html], nginx can perform appropriate substitution of the cloud-config $private_ipv4 and $public_ipv4 variables used to simplify network configuration. The http_sub_module is enabled in the official nginx binaries, and in most Linux distributions’ nginx packages.


Example

The example nginx configuration below will perform replacement of the $public_ipv4 and $private_ipv4 variables for each client connection from a Container Linux machine booting through the cloud-init process. This example works around a known nginx bug that prevents you from escaping the $ with geo.

geo $dollar {
  default "$";
}

server {
  listen 8080;

  location ~ ^/user_data {
    root /path/to/cloud/config/files;
      sub_filter '${dollar}public_ipv4' '$remote_addr';
      sub_filter '${dollar}private_ipv4' '$http_x_forwarded_for';
      # sub_filter '${dollar}private_ipv4' '$http_x_real_ip';
      sub_filter_once off;
      sub_filter_types '*';
  }
}





This example configuration is valid for all /user_data* URIs (e.g., /user_data_host1, /user_data_host2). With a remote nginx accessed via a transparent proxy, $private_ipv4 substitution will work only if the proxy adds appropriate HTTP_X_FORWARDED_FOR or HTTP_X_REAL_IP HTTP header to requests.







          

      

      

    

  

  
    
    Notes for distributors
    

    
 
  

    
      
          
            
  
Notes for distributors


Importing images

Images of Container Linux alpha releases are hosted at https://alpha.release.core-os.net/amd64-usr/. There are directories for releases by version as well as current with a copy of the latest version. Similarly, beta releases can be found at https://beta.release.core-os.net/amd64-usr/ and stable releases at https://stable.release.core-os.net/amd64-usr/.

Each directory has a version.txt file containing version information for the files in that directory. If you are importing images for use inside your environment it is recommended that you fetch version.txt from the current directory and use its contents to compute the path to the other artifacts. For example, to download the alpha OpenStack version of Container Linux:


	Download https://alpha.release.core-os.net/amd64-usr/current/version.txt.


	Parse version.txt to obtain the value of COREOS_VERSION_ID, for example 1576.1.0.


	Download https://alpha.release.core-os.net/amd64-usr/1576.1.0/coreos_production_openstack_image.img.bz2.




It is recommended that you also verify files using the CoreOS Image Signing Key [https://coreos.com/security/image-signing-key]. The GPG signature for each image is a detached .sig file that must be passed to gpg --verify. For example:

wget https://alpha.release.core-os.net/amd64-usr/current/coreos_production_openstack_image.img.bz2
wget https://alpha.release.core-os.net/amd64-usr/current/coreos_production_openstack_image.img.bz2.sig
gpg --verify coreos_production_openstack_image.img.bz2.sig





The signing key is rotated annually. We will announce upcoming rotations of the signing key on the user mailing list [https://groups.google.com/forum/#%21forum/coreos-user].




Image customization

There are two predominant ways that a Container Linux image can be easily customized for a specific operating environment: through Ignition, a first-boot provisioning tool that runs during a machine’s boot process, and through cloud-config [https://github.com/coreos/coreos-cloudinit/blob/master/Documentation/cloud-config], an older tool that runs every time a machine boots.


Ignition

Ignition [https://coreos.com/blog/introducing-ignition.html] is a tool that acquires a JSON config file when a machine first boots, and uses this config to perform tasks such as formatting disks, creating files, modifying and creating users, and adding systemd units. How Ignition acquires this config file varies per-platform, and it is highly recommended that providers ensure Ignition has support for their platform [https://github.com/coreos/ignition/blob/master/doc/supported-platforms].

Use Ignition to handle platform specific configuration such as custom networking, running an agent on the machine, or injecting files onto disk. To do this, place an Ignition config at /usr/share/oem/base/base.ign and it will be prepended to the user provided config. In addition, any config placed at /usr/share/oem/base/default.ign will be executed if a user config is not found. On platforms that support cloud-config, use this feature to run coreos-cloudinit when no Ignition config is provided.

Additionally, it is recommended that providers ensure that coreos-metadata [https://github.com/coreos/coreos-metadata/] and ct [https://github.com/coreos/container-linux-config-transpiler] have support for their platform. This will allow a nicer user experience, as coreos-metadata will be able to install users’ ssh keys and users will be able to reference dynamic data in their Container Linux Configs.




Cloud config

A Container Linux image can also be customized using cloud-config [https://github.com/coreos/coreos-cloudinit/blob/master/Documentation/cloud-config]. Users are recommended to instead use Container Linux Configs (that are converted into Ignition configs with ct [https://github.com/coreos/container-linux-config-transpiler]), for reasons outlined in the blog post that introduced Ignition [https://coreos.com/blog/introducing-ignition.html].

Providers that previously supported cloud-config should continue to do so, as not all users have switched over to Container Linux Configs. New platforms do not need to support cloud-config.

Container Linux will automatically parse and execute /usr/share/oem/cloud-config.yml if it exists.






Handling end-user Ignition files

End-users should be able to provide an Ignition file to your platform while specifying their VM’s parameters. This file should be made available to Container Linux at the time of boot (e.g. at known network address, injected directly onto disk). Examples of these data sources can be found in the Ignition documentation [https://github.com/coreos/ignition/blob/master/doc/supported-platforms].







          

      

      

    

  

  
    
    Tips and other settings
    

    
 
  

    
      
          
            
  
Tips and other settings


Loading kernel modules

Most Linux kernel modules get automatically loaded as-needed but there are a some situations where this doesn’t work. Problems can arise if there is boot-time dependencies are sensitive to exactly when the module gets loaded. Module auto-loading can be broken all-together if the operation requiring the module happens inside of a container. iptables and other netfilter features can easily encounter both of these issues. To force a module to be loaded early during boot simply list them in a file under /etc/modules-load.d. The file name must end in .conf.

echo nf_conntrack > /etc/modules-load.d/nf.conf





Or, using a Container Linux Config:

storage:
  files:
    - path: /etc/modules-load.d/nf.conf
      filesystem: root
      mode: 0644
      contents:
        inline: nf_conntrack






Loading kernel modules with options

The following section demonstrates how to provide module options when loading. After these configs are processed, the dummy module is loaded into the kernel, and five dummy interfaces are added to the network stack.

Further details can be found in the systemd man pages:
modules-load.d(5) [http://www.freedesktop.org/software/systemd/man/modules-load.d.html]
systemd-modules-load.service(8) [http://www.freedesktop.org/software/systemd/man/systemd-modules-load.service.html]
modprobe.d(5) [http://linux.die.net/man/5/modprobe.d]

This example Container Linux Config loads the dummy network interface module with an option specifying the number of interfaces the module should create when loaded (numdummies=5):

storage:
  files:
    - path: /etc/modprobe.d/dummy.conf
      filesystem: root
      mode: 0644
      contents:
        inline: options dummy numdummies=5
    - path: /etc/modules-load.d/dummy.conf
      filesystem: root
      mode: 0644
      contents:
        inline: dummy










Tuning sysctl parameters

The Linux kernel offers a plethora of knobs under /proc/sys to control the availability of different features and tune performance parameters. For one-shot changes values can be written directly to the files under /proc/sys but persistent settings must be written to /etc/sysctl.d:

echo net.netfilter.nf_conntrack_max=131072 > /etc/sysctl.d/nf.conf
sysctl --system





Some parameters, such as the conntrack one above, are only available after the module they control has been loaded. To ensure any modules are loaded in advance use modules-load.d as described above. A complete Container Linux Config using both would look like:

storage:
  files:
    - path: /etc/modules-load.d/nf.conf
      filesystem: root
      mode: 0644
      contents:
        inline: |
          nf_conntrack
    - path: /etc/sysctl.d/nf.conf
      filesystem: root
      mode: 0644
      contents:
        inline: |
          net.netfilter.nf_conntrack_max=131072





Further details can be found in the systemd man pages:
sysctl.d(5) [http://www.freedesktop.org/software/systemd/man/sysctl.d.html]
systemd-sysctl.service(8) [http://www.freedesktop.org/software/systemd/man/systemd-sysctl.service.html]




Adding custom kernel boot options

The Container Linux bootloader parses the configuration file /usr/share/oem/grub.cfg, where custom kernel boot options may be set.

The /usr/share/oem/grub.cfg file can be configured with Ignition. Note that Ignition runs after GRUB. Therefore, the GRUB configuration won’t take effect until the next reboot of the node.

Here’s an example configuration:

storage:
  filesystems:
    - name: "OEM"
      mount:
        device: "/dev/disk/by-label/OEM"
        format: "ext4"
  files:
    - filesystem: "OEM"
      path: "/grub.cfg"
      mode: 0644
      append: true
      contents:
        inline: |
          set linux_append="$linux_append coreos.autologin=tty1"






Enable CoreOS Container Linux autologin

To login without a password on every boot, edit /usr/share/oem/grub.cfg to add the line:

set linux_append="$linux_append coreos.autologin=tty1"








Enable systemd debug logging

Edit /usr/share/oem/grub.cfg to add the following line, enabling systemd’s most verbose debug-level logging:

set linux_append="$linux_append systemd.log_level=debug"








Mask a systemd unit

Completely disable the systemd-networkd.service unit by adding this line to /usr/share/oem/grub.cfg:

set linux_append="$linux_append systemd.mask=systemd-networkd.service"










Adding custom messages to MOTD

When logging in interactively, a brief message (the “Message of the Day (MOTD)”) reports the Container Linux release channel, version, and a list of any services or systemd units that have failed. Additional text can be added by dropping text files into /etc/motd.d. The directory may need to be created first, and the drop-in file name must end in .conf. Container Linux versions 555.0.0 and greater support customization of the MOTD.

mkdir -p /etc/motd.d
echo "This machine is dedicated to computing Pi" > /etc/motd.d/pi.conf





Or via a Container Linux Config:

storage:
  files:
    - path: /etc/motd.d/pi.conf
      filesystem: root
      mode: 0644
      contents:
        inline: This machine is dedicated to computing Pi








Prevent login prompts from clearing the console

The system boot messages that are printed to the console will be cleared when systemd starts a login prompt. In order to preserve these messages, the getty services will need to have their TTYVTDisallocate setting disabled. This can be achieved with a drop-in for the template unit, getty@.service. Note that the console will still scroll so the login prompt is at the top of the screen, but the boot messages will be available by scrolling.

mkdir -p '/etc/systemd/system/getty@.service.d'
echo -e '[Service]\nTTYVTDisallocate=no' > '/etc/systemd/system/getty@.service.d/no-disallocate.conf'





Or via a Container Linux Config:

systemd:
  units:
    - name: getty@.service
      dropins:
        - name: no-disallocate.conf
          contents: |
            [Service]
            TTYVTDisallocate=no





When the TTYVTDisallocate setting is disabled, the console scrollback is not cleared on logout, not even by the clear command in the default .bash_logout file. Scrollback must be cleared explicitly, e.g. by running echo -en '\033[3J' > /dev/console as the root user.







          

      

      

    

  

  
    
    Overview of systemctl
    

    
 
  

    
      
          
            
  
Overview of systemctl

systemctl is your interface to systemd, the init system used in Container Linux. All processes on a single machine are started and managed by systemd, including your Docker containers. You can learn more in our Getting Started with systemd guide. Let’s explore a few helpful systemctl commands. You must run all of these commands locally on the Container Linux machine:


Find the status of a container

The first step to troubleshooting with systemctl is to find the status of the item in question. If you have multiple Exec commands in your service file, you can see which one of them is failing and view the exit code. Here’s a failing service that starts a private Docker registry in a container:

$ sudo systemctl status custom-registry.service

custom-registry.service - Custom Registry Service
   Loaded: loaded (/media/state/units/custom-registry.service; enabled-runtime)
   Active: failed (Result: exit-code) since Sun 2013-12-22 12:40:11 UTC; 35s ago
  Process: 10191 ExecStopPost=/usr/bin/etcdctl delete /registry (code=exited, status=0/SUCCESS)
  Process: 10172 ExecStartPost=/usr/bin/etcdctl set /registry index.domain.com:5000 (code=exited, status=0/SUCCESS)
  Process: 10171 ExecStart=/usr/bin/docker run -rm -p 5555:5000 54.202.26.87:5000/registry /bin/sh /root/boot.sh (code=exited, status=1/FAILURE)
 Main PID: 10171 (code=exited, status=1/FAILURE)
   CGroup: /system.slice/custom-registry.service

Dec 22 12:40:01 localhost etcdctl[10172]: index.domain.com:5000
Dec 22 12:40:01 localhost systemd[1]: Started Custom Registry Service.
Dec 22 12:40:01 localhost docker[10171]: Unable to find image '54.202.26.87:5000/registry' (tag: latest) locally
Dec 22 12:40:11 localhost docker[10171]: 2013/12/22 12:40:11 Invalid Registry endpoint: Get http://index2.domain.com:5000/v1/_ping: dial tcp 54.204.26.2...o timeout
Dec 22 12:40:11 localhost systemd[1]: custom-registry.service: main process exited, code=exited, status=1/FAILURE
Dec 22 12:40:11 localhost etcdctl[10191]: index.domain.com:5000
Dec 22 12:40:11 localhost systemd[1]: Unit custom-registry.service entered failed state.
Hint: Some lines were ellipsized, use -l to show in full.





You can see that Process: 10171 ExecStart=/usr/bin/docker exited with status=1/FAILURE and the log states that the index that we attempted to launch the container from, 54.202.26.87 wasn’t valid, so the container image couldn’t be downloaded.




List status of all units

Listing all of the processes running on the box is too much information, but you can pipe the output into grep to find the services you’re looking for. Here’s all service files and their status:

sudo systemctl list-units | grep .service








Start or stop a service

sudo systemctl start apache.service





sudo systemctl stop apache.service








Kill a service

This will stop the process immediately:

sudo systemctl kill apache.service








Restart a service

Restarting a service is as easy as:

sudo systemctl restart apache.service





If you’re restarting a service after you changed its service file, you will need to reload all of the service files before your changes take effect:

sudo systemctl daemon-reload








More information

Getting Started with systemd
systemd.service Docs
systemd.unit Docs







          

      

      

    

  

  
    
    Tuning CoreOS Container Linux power management
    

    
 
  

    
      
          
            
  
Tuning CoreOS Container Linux power management


CPU governor

By default, Container Linux uses the “performance” CPU governor meaning that the CPU operates at the maximum frequency regardless of load. This is reasonable for a system that is under constant load or cannot tolerate increased latency. On the other hand, if the system is idle much of the time and latency is not a concern, power savings may be desired.

Several governors are available:

| Governor       | Description                                                           |
|—————-|———————————————————————–|
| performance  | Default. Operate at the maximum frequency                             |
| ondemand     | Dynamically scale frequency at 75% cpu load                           |
| conservative | Dynamically scale frequency at 95% cpu load                           |
| powersave    | Operate at the minimum frequency                                      |
| userspace    | Controlled by a userspace application via the scaling_setspeed file |

The “conservative” governor can be used instead using the following shell commands:

modprobe cpufreq_conservative
echo "conservative" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor > /dev/null





This can be configured with a Container Linux Config as well:

systemd:
  units:
    - name: cpu-governor.service
      enable: true
      contents: |
        [Unit]
        Description=Enable CPU power saving

        [Service]
        Type=oneshot
        RemainAfterExit=yes
        ExecStart=/usr/sbin/modprobe cpufreq_conservative
        ExecStart=/usr/bin/sh -c '/usr/bin/echo "conservative" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor'

        [Install]
        WantedBy=multi-user.target





More information on further tuning each governor is available in the Kernel Documentation [https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt]







          

      

      

    

  

  
    
    Production users
    

    
 
  

    
      
          
            
  
Production users

This document tracks people and use cases for Container Linux in production. Join the community [https://github.com/coreos/docs/] and help us keep the list current.


Ticketmaster [http://www.ticketmaster.com/]

Ticketmaster provides services for ticket management and entertainment venues. Tectonic, which runs Container Linux [https://www.youtube.com/watch?v=wqXVKneP0Hg], is a key part of their infrastructure.




Packet.net [https://www.packet.net/]

Packet.net is a hosted bare metal server provider. They use Container Linux [https://www.quora.com/Who-uses-CoreOS-in-production] to power parts of their infrastructure.




Verizon Labs [http://www.verizon.com/about/careers/technology]

Verizon Labs uses Container Linux [https://www.youtube.com/watch?v=uwssG6eHYBQ&feature=youtu.be&list=PLlh6TqkU8kg_Eydfk1Nyt6iK7wM8v9bRA] because it’s minimal and solves many many of the inherent challenges of running large clusters.




CA Technology [https://www.ca.com/us.html]

CA Technology uses Container Linux [https://www.youtube.com/watch?v=1-SbSa_rwOg&feature=youtu.be&list=PLlh6TqkU8kg_Eydfk1Nyt6iK7wM8v9bRA] to run some of the Kubernetes solutions they provide to customers.




@FuriKuri [https://furikuri.net]

@FuriKuri uses Container Linux [https://www.youtube.com/watch?v=1-SbSa_rwOg&feature=youtu.be&list=PLlh6TqkU8kg_Eydfk1Nyt6iK7wM8v9bRA] to host  his private projects (e.g. the page https://furikuri.net itself) in a minimal and lightweight way.







          

      

      

    

  

  
    
    Provisioning
    

    
 
  

    
      
          
            
  
Provisioning

Container Linux automates machine provisioning with a specialized system for applying initial configuration. This system implements a process of (trans)compilation and validation for machine configs, and an atomic service to apply validated configurations to machines.


Container Linux Config

Container Linux admins define these configurations in a format called the Container Linux Config [https://github.com/coreos/container-linux-config-transpiler/blob/master/doc/configuration], which is specific to Container Linux, structured as YAML, and intended to be human-readable. The Container Linux Config has features devoted to configuring Container Linux services such as etcd [https://github.com/coreos/etcd], rkt [https://github.com/rkt/rkt], Docker, flannel [https://github.com/coreos/flannel], and locksmith [https://github.com/coreos/locksmith]. The defining feature of the config is that it cannot be sent directly to a Container Linux provisioning target. Instead, it is first validated and transformed into a machine-readable and wire-efficient form.

The following examples demonstrate the simplicity of the Container Linux Config format.

This extremely simple Container Linux Config will fetch and run the current release of etcd:

etcd:





Extend the definition to specify the version of etcd to run. The following example will provision a new Container Linux machine to fetch and run the etcd service, version 3.1.6:

etcd:
  version: 3.1.6





Use variable replacement to configure the etcd service with the provisioning target’s public and private IPv4 addresses, making it repeatable across a group of machines.

etcd:
  advertise_client_urls:       http://{PUBLIC_IPV4}:2379
  initial_advertise_peer_urls: http://{PRIVATE_IPV4}:2380
  listen_client_urls:          http://0.0.0.0:2379
  listen_peer_urls:            http://{PRIVATE_IPV4}:2380
  discovery:                   https://discovery.etcd.io/<token>





PUBLIC_IPV4 and PRIVATE_IPV4 are automatically populated from the environment in which Container Linux runs, if this metadata exists. Given the many different environments in which Container Linux can run, it’s difficult if not impossible to accurately determine these variables in every instance. Be certain to check this value as a troubleshooting measure.

For example, the default metadata for an EC2 environment would be used: public_ipv4 and local_ipv4. On Azure, either the virtual IP or public IP could be used for the PUBLIC_IPV4 (ct makes a best guess and uses the virtual IP, but this could change in the future), and the dynamic IP would be used for the PRIVATE_IPV4. On bare metal, this information cannot be reliably derived in a general manner, so these variables cannot be used.

Because variable expansion is unpredictable and complex, and because it is also common for users to inadvertently write invalid configs, the use of a transformation tool is strongly encouraged. The default tool recommended for this task is the Config Transpiler [https://github.com/coreos/container-linux-config-transpiler/blob/master/doc/overview] (ct for short). The Config Transpiler will validate and transform a Container Linux Config into the format that Container Linux can consume: the Ignition Config.




Ignition Config

Ignition, the utility in Container Linux responsible for provisioning the machine, fetches and executes the Ignition Config. Container Linux directly consumes the Ignition Config configuration format.

Ignition Configs are mostly static, distro-agnostic, and meant to be generated by a machine rather than a human. While they can be written directly by users, it is highly discouraged due to the ease with which errors may be introduced. Rather than writing Ignition Configs directly, users are encouraged to use provisioning tools like Matchbox [https://github.com/coreos/matchbox], which transparently translate Container Linux Configs to Ignition Configs, or to use the Config Transpiler itself.

[image: ../_images/ct-workflow.svg]visual overview of the alternate ct workflows

As shown in this diagram, ct is manually invoked only when users are manually provisioning machines. If a provisioning tool like Matchbox is used, ct will transparently be incorporated into the deployment pipeline. In which case, the user only needs to prepare a Container Linux Config - Ignition and the Ignition Config are merely an implementation detail.




Config Transpiler

The Container Linux Config Transpiler abstracts the details of configuring Container Linux. It’s responsible for transforming a Container Linux Config written by a user into an Ignition Config to be consumed by instances of Container Linux.

The Container Linux Config Transpiler command line interface, ct for short, can be downloaded from its GitHub Releases page [https://github.com/coreos/container-linux-config-transpiler/releases].

The following config will configure an etcd cluster using the machine’s public and private IP addresses:

etcd:
  advertise_client_urls:       http://{PUBLIC_IPV4}:2379
  initial_advertise_peer_urls: http://{PRIVATE_IPV4}:2380
  listen_client_urls:          http://0.0.0.0:2379
  listen_peer_urls:            http://{PRIVATE_IPV4}:2380
  discovery:                   https://discovery.etcd.io/<token>





As suggested earlier, ct requires information about the target environment before it can transform configs which use templating. If this config is passed to ct without any other arguments, ct fails with the following error message:

$ ct < example.yml
error: platform must be specified to use templating





This message states that because the config takes advantage of templating (in this case,  PUBLIC_IPV4), ct must be invoked with the --platform argument. This extra information is used by ct to make the platform-specific customizations necessary. Keeping the Container Linux Config and the invocation arguments separate allows the Container Linux Config to remain largely platform independent.

CT can be invoked again and given Amazon EC2 as an example:

$ ct --platform=ec2 < example.yml
{"ignition":{"version":"2.0.0","config"...





This time, ct successfully runs and produces the following Ignition Config:

{
  "ignition": { "version": "2.0.0" },
  "systemd": {
    "units": [{
      "name": "etcd-member.service",
      "enable": true,
      "dropins": [{
        "name": "20-clct-etcd-member.conf",
        "contents": "[Unit]\nRequires=coreos-metadata.service\nAfter=coreos-metadata.service\n\n[Service]\nEnvironmentFile=/run/metadata/coreos\nExecStart=\nExecStart=/usr/lib/coreos/etcd-wrapper $ETCD_OPTS \\\n  --listen-peer-urls=\"http://${COREOS_EC2_IPV4_LOCAL}:2380\" \\\n  --listen-client-urls=\"http://0.0.0.0:2379\" \\\n  --initial-advertise-peer-urls=\"http://${COREOS_EC2_IPV4_LOCAL}:2380\" \\\n  --advertise-client-urls=\"http://${COREOS_EC2_IPV4_PUBLIC}:2379\" \\\n  --discovery=\"https://discovery.etcd.io/\u003ctoken\u003e\""
      }]
    }]
  }
}





This Ignition Config enables and configures etcd as specified in the above Container Linux Config. This can be more easily seen if the contents of the etcd drop-in are formatted nicely:

[Unit]
Requires=coreos-metadata.service
After=coreos-metadata.service

[Service]
EnvironmentFile=/run/metadata/coreos
ExecStart=
ExecStart=/usr/lib/coreos/etcd-wrapper $ETCD_OPTS \
  --listen-peer-urls="http://${COREOS_EC2_IPV4_LOCAL}:2380" \
  --listen-client-urls="http://0.0.0.0:2379" \
  --initial-advertise-peer-urls="http://${COREOS_EC2_IPV4_LOCAL}:2380" \
  --advertise-client-urls="http://${COREOS_EC2_IPV4_PUBLIC}:2379" \
  --discovery="https://discovery.etcd.io/<token>"





The details of these changes are covered in depth in Ignition’s metadata documentation, but the gist is that coreos-metadata is used to fetch the IP addresses from the Amazon APIs and then systemd is leveraged to substitute the IP addresses into the invocation of etcd. The result is that even though Ignition only runs once, coreos-metadata fetches the IP addresses whenever etcd is run, allowing etcd to use IP addresses that have the potential to change.




Migrating from cloud configs

Previously, the recommended way to provision a Container Linux machine was with a cloud-config. These configs would be given to a Container Linux machine and a utility called coreos-cloudinit [https://github.com/coreos/coreos-cloudinit] would read this file and apply the configuration on every boot.

For a number of reasons, coreos-cloudinit has been deprecated in favor of Container Linux Configs and Ignition. For help migrating from these legacy cloud-configs to Container Linux Configs, refer to the migration guide.




Using Container Linux Configs

Now that the basics of Container Linux Configs have been covered, a good next step is to read through the examples [https://github.com/coreos/container-linux-config-transpiler/blob/master/doc/examples] and start experimenting. The troubleshooting guide [https://github.com/coreos/ignition/blob/master/doc/getting-started.md#troubleshooting] is a good reference for debugging issues.







          

      

      

    

  

  
    
    Container Linux quick start
    

    
 
  

    
      
          
            
  
Container Linux quick start

If you don’t have a Container Linux machine running, check out the guides on running Container Linux [https://coreos.com/os/docs/latest/#running-coreos] on most cloud providers (EC2, Rackspace, GCE), virtualization platforms (Vagrant, VMware, OpenStack, QEMU/KVM) and bare metal servers (PXE, iPXE, ISO, Installer). With any of these guides you will have machines up and running in a few minutes.

It’s highly recommended that you set up a cluster of at least 3 machines — it’s not as much fun on a single machine. If you don’t want to break the bank, Vagrant allows you to run an entire cluster on your laptop. For a cluster to be properly bootstrapped, you have to provide ideally an Ignition config [https://coreos.com/blog/introducing-ignition.html] (generated from a Container Linux Config), or possibly a cloud-config, via user-data, which is covered in each platform’s guide.

Container Linux gives you three essential tools: service discovery, container management and process management. Let’s try each of them out.

First, on the client start your user agent by typing:

eval $(ssh-agent)





Then, add your private key to the agent by typing:

ssh-add





Connect to a Container Linux machine via SSH as the user core. For example, on Amazon, use:

$ ssh core@an.ip.compute-1.amazonaws.com
CoreOS (beta)





If you’re using Vagrant, you’ll need to connect a bit differently:

$ ssh-add ~/.vagrant.d/insecure_private_key
Identity added: /Users/core/.vagrant.d/insecure_private_key (/Users/core/.vagrant.d/insecure_private_key)
$ vagrant ssh core-01
CoreOS (beta)






Service discovery with etcd

The first building block of Container Linux is service discovery with etcd (docs [https://coreos.com/etcd/docs/latest/]). Data stored in etcd is distributed across all of your machines running Container Linux. For example, each of your app containers can announce itself to a proxy container, which would automatically know which machines should receive traffic. Building service discovery into your application allows you to add more machines and scale your services seamlessly.

If you used an example Container Linux Config or cloud-config [https://coreos.com/os/docs/latest/cloud-config.html] from a guide linked in the first paragraph, etcd is automatically started on boot.

A good starting point for a Container Linux Config would be something like:

etcd:
  discovery: https://discovery.etcd.io/<token>
passwd:
  users:
    - name: core
      ssh_authorized_keys:
        - ssh-rsa AAAA...





In order to get the discovery token, visit https://discovery.etcd.io/new and you will receive a URL including your token. Paste the whole thing into your Container Linux Config file.

etcdctl is a command line interface to etcd that is preinstalled on Container Linux. To set and retrieve a key from etcd you can use the following examples:

Set a key message with value Hello world:

etcdctl set /message "Hello world"





Read the value of message back:

etcdctl get /message





You can also use simple curl. These examples correspond to previous ones:

Set the value:

curl -L http://127.0.0.1:2379/v2/keys/message -XPUT -d value="Hello world"





Read the value:

curl -L http://127.0.0.1:2379/v2/keys/message





If you followed a guide to set up more than one Container Linux machine, you can SSH into another machine and can retrieve this same value.


More detailed information

View Complete Guide
Read etcd API Docs






Container management with Docker

The second building block, Docker (docs [https://docs.docker.com/]), is where your applications and code run. It is installed on each Container Linux machine. You should make each of your services (web server, caching, database) into a container and connect them together by reading and writing to etcd. You can quickly try out a minimal busybox container in two different ways:

Run a command in the container and then stop it:

docker run busybox /bin/echo hello world





Open a shell prompt inside the container:

docker run -i -t busybox /bin/sh






More detailed information

View Complete Guide
Read Docker Docs









          

      

      

    

  

  
    
    Reading the system log
    

    
 
  

    
      
          
            
  
Reading the system log

journalctl is your interface into a single machine’s journal/logging. All service files insert data into the systemd journal. There are a few helpful commands to read the journal:


Read the entire journal

$ journalctl

-- Logs begin at Fri 2013-12-13 23:43:32 UTC, end at Sun 2013-12-22 12:28:45 UTC. --
Dec 22 00:10:21 localhost systemd-journal[33]: Runtime journal is using 184.0K (max 49.9M, leaving 74.8M of free 499.0M, current limit 49.9M).
Dec 22 00:10:21 localhost systemd-journal[33]: Runtime journal is using 188.0K (max 49.9M, leaving 74.8M of free 499.0M, current limit 49.9M).
Dec 22 00:10:21 localhost kernel: Initializing cgroup subsys cpuset
Dec 22 00:10:21 localhost kernel: Initializing cgroup subsys cpu
Dec 22 00:10:21 localhost kernel: Initializing cgroup subsys cpuacct
Dec 22 00:10:21 localhost kernel: Linux version 3.11.7+ (buildbot@10.10.10.10) (gcc version 4.6.3 (Gentoo Hardened 4.6.3 p1.13, pie-0.5.2)
...
1000s more lines








Read entries for a specific service

Read entries generated by a specific unit:

$ journalctl -u apache.service

-- Logs begin at Fri 2013-12-13 23:43:32 UTC, end at Sun 2013-12-22 12:32:52 UTC. --
Dec 22 12:32:39 localhost systemd[1]: Starting Apache Service...
Dec 22 12:32:39 localhost systemd[1]: Started Apache Service.
Dec 22 12:32:39 localhost docker[9772]: /usr/sbin/apache2ctl: 87: ulimit: error setting limit (Operation not permitted)
Dec 22 12:32:39 localhost docker[9772]: apache2: Could not reliably determine the server's fully qualified domain name, using 172.17.0.6 for ServerName








Read entries since boot

Reading just the entries since the last boot is an easy way to troubleshoot services that are failing to start properly:

journalctl --boot








Tail the journal

You can tail the entire journal or just a specific service:

journalctl -f





journalctl -u apache.service -f








Read entries with line wrapping

By default journalctl passes FRSXMK command line options to less [http://linux.die.net/man/1/less]. You can override these options by setting a custom SYSTEMD_LESS [http://www.freedesktop.org/software/systemd/man/journalctl.html#%24SYSTEMD_LESS] environment variable with omitted S option:

SYSTEMD_LESS=FRXMK journalctl





Read logs without pager:

journalctl --no-pager








Debugging journald

If you’ve faced some problems with journald you can enable debug mode following the instructions below.


Enable debugging manually

mkdir -p /etc/systemd/system/systemd-journald.service.d/





Create Drop-In /etc/systemd/system/systemd-journald.service.d/10-debug.conf with following content:

[Service]
Environment=SYSTEMD_LOG_LEVEL=debug





And restart systemd-journald service:

systemctl daemon-reload
systemctl restart systemd-journald
dmesg | grep systemd-journald










Enable debugging via a Container Linux Config

Define a Drop-In in a Container Linux Config:

systemd:
  units:
    - name: systemd-journald.service
      dropins:
        - name: 10-debug.conf
          contents: |
            [Service]
            Environment=SYSTEMD_LOG_LEVEL=debug








More information

Getting Started with systemd
Network Configuration with networkd







          

      

      

    

  

  
    
    Using authentication for a registry
    

    
 
  

    
      
          
            
  
Using authentication for a registry

Many container image registries require authentication. This document explains how to configure container management software like Docker, Kubernetes, rkt, and Mesos to authenticate with and pull containers from registries like Quay [https://quay.io/] and Docker Hub [https://hub.docker.com/].


Using a Quay robot for registry auth

The recommended way to authenticate container manager software with quay.io [https://quay.io/] is via a Quay Robot [https://docs.quay.io/glossary/robot-accounts.html]. The robot account acts as an authentication token with some nice features, including:


	Readymade repository authentication configuration files


	Credentials are limited to specific repositories


	Choose from read, write, or admin privileges


	Token regeneration




[image: ../_images/quay-robot-screen.png]Quay Robot settings

Quay robots provide config files for Kubernetes, Docker, Mesos, and rkt, along with intructions for using each. Find this information in the Robot Accounts tab under your Quay user settings. For more information, see the Quay robot documentation [https://docs.quay.io/glossary/robot-accounts.html].




Manual registry auth setup

If you are using a registry other than Quay (e.g., Docker Hub, Docker Store, etc) you will need to manually configure your credentials with your container-runtime or orchestration tool.


Docker

The Docker client uses an interactive command to authenticate with a centralized service.

$ docker login -u <username> -p <password> https://registry.example.io





This command creates the file $HOME/.docker/config.json, formatted like the following example:

/home/core/.docker/config.json:

{
    "auths": {
        "https://index.docker.io/v1/": {
            "auth": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx="
        },
        "quay.io": {
            "xxxx": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
        },
        "https://registry.example.io/v0/": {
            "auth": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx="
        }
    }
}





On Container Linux, this process can be automated by writing out the config file during system provisioning with a Container Linux Config. Since the config is written to the core user’s home directory, ensure that your systemd units run as that user, by adding, e.g., User=core.

Docker also offers the ability to configure a credentials store, such as your operating system’s keychain. This is outlined  in the Docker login documentation [https://docs.docker.com/engine/reference/commandline/login/].




Kubernetes

Kubernetes uses Secrets [https://kubernetes.io/docs/user-guide/secrets/] to store registry credentials.

When manually configuring authentication with any registry in Kubernetes (including Quay and Docker Hub) the following command is used to generate the Kubernetes registry-auth secret:

$ kubectl create secret docker-registry my-favorite-registry-secret --docker-username=giffee_lover_93 --docker-password='passphrases are great!' --docker-email='giffee.lover.93@example.com' --docker-server=registry.example.io
secret "my-favorite-registry-secret" created





If you prefer you can store this in a YAML file by adding the --dry-run and -o yaml flag to the end of your command and copying or redirecting the output to a file:

$ kubectl create secret docker-registry my-favorite-registry [...] --dry-run -o yaml | tee credentials.yaml





apiVersion: v1
data:
  .dockercfg: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx==
kind: Secret
metadata:
  creationTimestamp: null 
  name: my-favorite-registry-secret
type: kubernetes.io/dockercfg





$ kubectl create -f credentials.yaml
secret "my-favorite-registry-secret" created





You can check that this secret is loaded with with the kubectl get command:

$ kubectl get my-favorite-registry-secret
NAME                            TYPE                      DATA      AGE
my-favorite-registry-secret     kubernetes.io/dockercfg   1         30m





The secret can be used in a Pod spec with the imagePullSecrets variable:

apiVersion: v1
kind: Pod
metadata:
  name: somepod
  namespace: all
spec:
  containers:
    - name: web
      image: registry.example.io/v0/giffee_lover_93/somerepo
  
  imagePullSecrets:
    - name: my-favorite-registry-secret





For more information, check the docker-registry Kubernetes secret [https://kubernetes.io/docs/user-guide/kubectl/kubectl_create_secret_docker-registry/] and Kubernetes imagePullSecrets [https://kubernetes.io/docs/user-guide/images/] documentation.




rkt

rkt stores registry-authentication in a JSON file stored in the directory /etc/rkt/auth.d/.

/etc/rkt/auth.d/registry.example.io.json

{
  "rktKind": "auth",
  "rktVersion": "v1",
  "domains": [
    "https://registry.example.io/v0/"
  ],
  "type": "basic",
  "credentials": {
    "user": "giffeeLover93",
    "password": "passphrases are great!"
  }
}





While you can embed your password in plaintext in this file, you should try using a disposable token instead. Check your registry documentation to see if it offers token-based authentication.

Now rkt will authenticate with https://registry.example.io/v0/ using the provided credentials to fetch images.

For more information about rkt credentials, see the rkt configuration docs [https://coreos.com/rkt/docs/latest/configuration.html#configuration-kinds].

Just like with the Docker config, this file can be copied to /etc/rkt/auth.d/registry.example.io.json on a Container Linux node during system provisioning with a Container Linux Config.




Mesos

Mesos uses a gzip-compressed archive of a .docker/config.json (directory and file) to access private repositories.

Once you have followed the above steps to create the docker registry auth config file create your Mesos configuration using tar:

$ tar cxf ~/.docker/config.json





The archive secret is referenced via the uris field in a container specification file:

{
  "id": "/some/name/or/id",
  "cpus": 1,
  "mem": 1024,
  "instances": 1,
  "container": {
    "type": "DOCKER",
    "docker": {
      "image": "https://registry.example.io/v0/giffee_lover_93/some-image",
      "network": "HOST"
    }
  },
  
  "uris":  [
      "file:///path/to/registry.example.io.tar.gz"
  ]
}





More thorough information about configuring Mesos registry authentication can be found on the ‘Using a Private Docker Registry’ [https://mesosphere.github.io/marathon/docs/native-docker-private-registry.html] documentation.






Copying the config file with a Container Linux Config

Container Linux Configs can be used to provision a Container Linux node on first boot. Here we will use it to copy registry authentication config files to their appropriate destination on disk. This provides immediate access to your private Docker Hub and Quay image repositories without the need for manual intervention. The same Container Linux Config file can be used to copy registry auth configs onto an entire cluster of Container Linux nodes.

Here is an example of using a Container Linux Config to write the .docker/config.json registry auth configuration file mentioned above to the appropriate path on the Container Linux node:

storage:
  files:
    - path: /home/core/.docker/config.json
      filesystem: root
      mode: 0644
      contents:
        inline: |
          {
            "auths": {
              "quay.io": {
                "auth": "AbCdEfGhIj",
                "email": "your.email@example.com"
              }
            }
          }





Container Linux Configs can also download a file from a remote location and verify its integrity with a SHA512 hash:

storage:
  files:
    - path: /home/core/.docker/config.json
      filesystem: root
      mode: 0644
      contents:
        remote:
          url: http://internal.infra.example.com/cluster-docker-config.json
          verification:
            hash:
              function: sha512
              sum: 0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef





For details, check out the Container Linux Config examples [https://github.com/coreos/container-linux-config-transpiler/blob/master/doc/examples].






Using authentication for a registry

A json file config.json is generated in your home directory on docker login. It holds authentication information for a public or private Docker registry. This config.json can be reused in other home directories to authenticate. One way to do this is using Cloud-Config which is discussed more below. If you want to populate these values without running Docker login, the auth token is a base64 encoded string: base64(<username>:<password>).


The Docker config file

Here’s what an example looks like with credentials for Docker’s public index and a private index:


/home/core/.docker/config.json

{
  "auths": {
    "quay.io": {
      "auth": "xXxXxXxXxXx="
    },
    "https://index.docker.io/v1/": {
      "auth": "xXxXxXxXxXx="
    },
    "https://index.example.com": {
      "auth": "XxXxXxXxXxX="
    }
  }
}





The last step is to tell your systemd units to run as the core user in order for Docker to use the credentials we just set up. This is done in the service section of the unit:

[Unit]
Description=My Container
After=docker.service

[Service]
User=core
ExecStart=/usr/bin/docker run busybox /bin/sh -c "trap 'exit 0' INT TERM; while true; do echo Hello World; sleep 1; done"

[Install]
WantedBy=multi-user.target








Cloud-config

Since each machine in your cluster is going to have to pull images, cloud-config is the easiest way to write the config file to disk.

#cloud-config
write_files:
    - path: /home/core/.docker/config.json
      owner: core:core
      permissions: '0600'
      content: |
        {
          "auths": {
            "quay.io": {
              "auth": "xXxXxXxXxXx="
            },
            "https://index.docker.io/v1/": {
              "auth": "xXxXxXxXxXx="
            },
            "https://index.example.com": {
              "auth": "XxXxXxXxXxX="
            }
          }
        }










Using a registry without SSL configured

The default behavior of Docker is to prevent access to registries that aren’t using SSL. If you’re running a registry behind your firewall without SSL, you need to configure an additional parameter, which whitelists a CIDR range of allowed “insecure” registries.

The best way to do this is within your cloud-config:

#cloud-config

coreos:
  units:
    - name: docker.service
      drop-ins:
        - name: 50-insecure-registry.conf
          content: |
            [Service]
            Environment='DOCKER_OPTS=--insecure-registry="10.0.1.0/24"'











          

      

      

    

  

  
    
    Configuring Root Filesystem Placement
    

    
 
  

    
      
          
            
  
Configuring Root Filesystem Placement

Container Linux supports composite disk devices such as RAID arrays. If the root filesystem is placed on a composite device, special care must be taken to ensure Container Linux can find and mount the filesystem early in the boot process. GPT partition entries have a partition type GUID [https://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_type_GUIDs] that specifies what type of partition it is (e.g. Linux filesystem); Container Linux uses special type GUIDs to indicate that a partition is a component of a composite device containing the root filesystem.


Root on RAID

RAID enables multiple disks to be combined into a single logical disk to increase reliability and performance. To create a software RAID array when provisioning a Container Linux system, use the storage.raid section of a Container Linux Config [https://coreos.com/os/docs/latest/provisioning.html]. RAID components containing the root filesystem must have the type GUID be9067b9-ea49-4f15-b4f6-f36f8c9e1818. All other RAID arrays must not have that GUID; the Linux RAID partition GUID a19d880f-05fc-4d3b-a006-743f0f84911e is recommended instead. See the Ignition documentation [https://coreos.com/ignition/docs/latest/examples.html#create-a-raid-enabled-data-volume] for more information on setting up RAID for data volumes.


Overview

To place the root filesystem on a RAID array:


	Create the component partitions used in the RAID array with the type GUID be9067b9-ea49-4f15-b4f6-f36f8c9e1818.


	Create a RAID array from the component partitions.


	Create a filesystem labeled ROOT on the RAID array.


	Remove the ROOT label from the original root filesystem.







Example Container Linux Config

This Container Linux Config creates partitions on /dev/vdb and /dev/vdc that fill each disk, creates a RAID array named root_array from those partitions, and finally creates the root filesystem on the array. To prevent inadvertent booting from the original root filesystem [https://coreos.com/os/docs/latest/sdk-disk-partitions.html#partition-table], /dev/vda9 is reformatted with a blank ext4 filesystem labeled unused.

Warning: This will erase both /dev/vdb and /dev/vdc.

storage:
  disks:
    - device: /dev/vdb
      wipe_table: true
      partitions:
       - label: root1
         type_guid: be9067b9-ea49-4f15-b4f6-f36f8c9e1818
    - device: /dev/vdc
      wipe_table: true
      partitions:
       - label: root2
         type_guid: be9067b9-ea49-4f15-b4f6-f36f8c9e1818
  raid:
    - name: "root_array"
      level: "raid1"
      devices:
        - "/dev/vdb1"
        - "/dev/vdc1"
  filesystems:
    - name: "ROOT"
      mount:
        device: "/dev/md/root_array"
        format: "ext4"
        label: "ROOT"
    - name: "unused"
      mount:
        device: "/dev/vda9"
        format: "ext4"
        wipe_filesystem: true
        label: "unused"








Limitations


	Other system partitions, such as USR-A, USR-B, OEM, and EFI-SYSTEM, cannot be placed on a software RAID array.


	RAID components containing the root filesystem must be partitions on a GPT-partitioned device, not whole-disk devices or partitions on an MBR-partitioned disk.


	/etc/mdadm.conf cannot be used to configure a RAID array containing the root filesystem.


	Since Ignition cannot modify the type GUID of existing partitions, the default ROOT partition cannot be reused as a component of a RAID array. A future version of Ignition will support resizing the ROOT partition and changing its type GUID, allowing it to be used as part of a RAID array.












          

      

      

    

  

  
    
    Scheduling tasks with systemd timers
    

    
 
  

    
      
          
            
  
Scheduling tasks with systemd timers

Container Linux uses systemd timers (cron replacement) to schedule tasks. Here we will show you how you can schedule a periodic job.

Let’s create an alternative for this crontab job:

*/10 * * * * /usr/bin/date >> /tmp/date





Timers work directly with services’ units. So we have to create /etc/systemd/system/date.service first:

[Unit]
Description=Prints date into /tmp/date file

[Service]
Type=oneshot
ExecStart=/usr/bin/sh -c '/usr/bin/date >> /tmp/date'





Then we have to create timer unit with the same name but with *.timer suffix /etc/systemd/system/date.timer:

[Unit]
Description=Run date.service every 10 minutes

[Timer]
OnCalendar=*:0/10





This config will run date.service every 10 minutes. You can also list all timers enabled in your system using systemctl list-timers command or systemctl list-timers --all to list all timers. Run systemctl start date.timer to enable timer.

You can also create timer with different name, i.e. task.timer. In this case you have specify service unit name:

Unit=date.service






Container Linux Config

Here you’ll find an example Container Linux Config demonstrating how to install systemd timers:

systemd:
  units:
    - name: date.service
      contents: |
        [Unit]
        Description=Prints date into /tmp/date file

        [Service]
        Type=oneshot
        ExecStart=/usr/bin/sh -c '/usr/bin/date >> /tmp/date'
    - name: date.timer
      enable: true
      contents: |
        [Unit]
        Description=Run date.service every 10 minutes

        [Timer]
        OnCalendar=*:0/10

        [Install]
        WantedBy=multi-user.target








Further reading

If you’re interested in more general systemd timers feature, check out the full documentation [http://www.freedesktop.org/software/systemd/man/systemd.timer.html].







          

      

      

    

  

  
    
    Building development images
    

    
 
  

    
      
          
            
  
Building development images


Updating packages on an image

Building a new VM image is a time consuming process. On development images you can use gmerge to build packages on your workstation and ship them to your target VM.

On your workstation start the dev server inside the SDK chroot:

start_devserver --port 8080





NOTE: This port will need to be Internet accessible if your VM is remote.

Run gmerge from your VM and ensure that the DEVSERVER setting in /etc/coreos/update.conf points to your workstation IP/hostname and port.

gmerge coreos-base/update_engine






Updating an image with update engine

If you want to test that an image you built can successfully upgrade a running VM you can use devserver. To specify the version to upgrade to you can use the --image argument. This should be a newer build than the VM is currently running, otherwise devserver will answer “no update” to any requests. Here is an example using the default value:

start_devserver --image ../build/images/amd64-usr/latest/coreos_developer_image.bin





On the target VM ensure that the SERVER setting in /etc/coreos/update.conf points to your workstation, for example:

GROUP=developer
SERVER=http://you.example.com:8080/update
DEVSERVER=http://you.example.com:8080





If you modify this file restart update engine: systemctl restart update-engine

On the VM force an immediate update check:

update_engine_client -update





If the update fails you can check the logs of the update engine by running:

journalctl -u update-engine -o cat





If you want to download another update you may need to clear the reboot pending status:

update_engine_client -reset_status










Updating portage-stable ebuilds from Gentoo

There is a utility script called update_ebuilds that can pull from Gentoo’s git tree directly into your local portage-stable tree. Here is an example usage bumping go to the latest version:

./update_ebuilds --commit dev-lang/go





To create a Pull Request after the bump run:

cd ~/trunk/src/third_party/portage-stable
git checkout -b 'bump-go'
git push <your remote> bump-go








Tips and Tricks

We’ve compiled a list of tips and tricks that can make working with the SDK a bit easier.







          

      

      

    

  

  
    
    Building production images
    

    
 
  

    
      
          
            
  
Building production images


This document is not maintained

This document still contains useful pointers, but the details are not necessarily up to date.




Introduction

In general the automated process should always be used but in a pinch putting together a release manually may be necessary. All release information is tracked in the manifest [https://github.com/coreos/manifest] git repository which is usually organized like so:


	build-109.xml (previous release manifest)


	build-115.xml (current release manifest)


	master.xml    (master branch manifest)


	version.txt   (current version information)


	default.xml -> master.xml


	release.xml -> build-115.xml







Tagging releases

The first step of building a release is updating and tagging the release in the manifest git repository. A typical release off of master involves the following steps:


	Make sure you are on the master branch: repo init -b master


	Sync/checkout source, excluding local changes: repo sync --detach


	In the scripts directory: ./tag_release --push




That was far too easy, if you need to do it the hard way try this:


	Make sure you are on the master branch: repo init -b master


	Sync/checkout source, excluding local changes: repo sync --detach


	Switch to the somewhat hidden manifests checkout: cd .repo/manifests


	Update version.txt with the desired version number.


	COREOS_BUILD is the major version number, and should be the number of days since July 1st, 2013. COREOS_BRANCH should start at 0 and is incremented for every normal release based on a particular COREOS_BUILD version. COREOS_PATCH is reserved for exceptional situations such as emergency manual releases and should normally be 0.


	The complete version string is COREOS_BUILD.COREOS_BRANCH.COREOS_PATCH


	COREOS_SDK_VERSION should be the complete version string of an existing build. cork uses this to pick what SDK tarball to use when creating a fresh chroot and provides a fallback set of binary packages to use when the current release’s packages are unavailable. Usually it will be one release behind COREOS_BUILD.






	Generate a release manifest: repo manifest -r -o build-$BUILD.xml where $BUILD is the current value of COREOS_BUILD in version.txt.


	Update release.xml: ln -sf build-$BUILD.xml release.xml


	Commit! git add build-$BUILD.xml; git commit -a


	Tag! git tag v$BUILD.$BRANCH.$PATCH


	Push! git push origin HEAD:master HEAD:dev-channel HEAD:build-$BUILD v$BUILD.$BRANCH.$PATCH




If a release branch needs to be updated after master has moved on the procedure is similar. Unfortunately since tagging branched releases (not on master) is a bit trickier to get right the tag_release script cannot be used. The automated build will kick off after updating the dev-channel branch.


	Check out the release instead of master: repo init -b build-$BUILD -m release.xml


	Sync, cherry-pick, push, and whatever else is required to publish the desired changes in the repo-managed projects. If the desired changes are already published (such as if you are just updating to a later commit from a project’s master branch) then this can be skipped.


	cd .repo/manifests


	Update version.txt as desired. Usually just increment COREOS_PATCH.


	Update build-$BUILD.xml as desired. The output of repo manifest -r shouldn’t be used verbatim this time because it won’t generate meaningful values for the upstream project attribute when starting from a release manifest instead of master.xml but it can be useful for looking up the git commit to update the revision attribute to. If the new git commit is on a branch other than master be sure to update the upstream attribute with the appropriate ref spec for that branch.


	If this is the first time this branch has been updated on its own update the default.xml link so checking out this manifest branch with repo init but without the -m argument works: ln -sf build-$BUILD.xml default.xml


	Commit! git commit -a


	Tag! git tag v$BUILD.$BRANCH.$PATCH


	Push! git push origin HEAD:dev-channel HEAD:build-$BUILD v$BUILD.$BRANCH.$PATCH




Now you can start building images! This will build an image that can be ran under KVM and uses near production values.

Note: Add COREOS_OFFICIAL=1 here if you are making a real release. That will change the version to leave off the build id suffix.

./build_image prod --group alpha





The generated production image is bootable as-is by qemu but for a larger ROOT partition or VMware images use image_to_vm.sh as described in the final output of build_image.




Pushing updates into CoreUpdate

The automated build host does not have access to production signing keys so the final signing and push to roller must be done elsewhere. The coreos_production_update.zip archive provides the tools required to do this so a full SDK setup is not required. This does require gsutil to be installed and configured. An update payload signed by the insecure development keys is generated automatically as coreos_production_update.gz and coreos_production_update.meta. If needed the raw filesystem image used to generate the payload is coreos_production_update.bin.bz2. As an example, to publish the insecurely signed payload:

URL=gs://builds.release.core-os.net/alpha/amd64-usr/321.0.0
cd $(mktemp -d)
gsutil -m cp $URL/coreos_production_update* ./
gpg --verify coreos_production_update.zip.sig
gpg --verify coreos_production_update.gz.sig
gpg --verify coreos_production_update.meta.sig
unzip coreos_production_update.zip
 ./core_roller_upload --user <you>@coreos.com --api_key <yourkey>





Note: prefixing the command with a space will avoid recording your API key in your bash history if $HISTCONTROL is ignorespace or ignoreboth.




Tips and Tricks

We’ve compiled a list of tips and tricks that can make working with the SDK a bit easier.







          

      

      

    

  

  
    
    CoreOS Container Linux disk layout
    

    
 
  

    
      
          
            
  
CoreOS Container Linux disk layout

Container Linux is designed to be reliably updated via a continuous stream of updates [https://coreos.com/why/#updates]. The operating system has 9 different disk partitions, utilizing a subset of those to make each update safe and enable a roll-back to a previous version if anything goes wrong.


Partition table

| Number | Label      | Description                                                       | Partition Type        |
|:——:|————|——————————————————————-|———————–|
| 1      | EFI-SYSTEM | Contains the bootloader                                           | FAT32                 |
| 2      | BIOS-BOOT  | Contains the second stages of GRUB for use when booting from BIOS | grub core.img         |
| 3      | USR-A      | One of two active/passive partitions holding Container Linux      | EXT4                  |
| 4      | USR-B      | One of two active/passive partitions holding Container Linux      | (empty on first boot) |
| 5      | ROOT-C     | This partition is reserved for future use                         | (none)                |
| 6      | OEM        | Stores configuration data specific to an OEM platform | EXT4                  |
| 7      | OEM-CONFIG | Optional storage for an OEM                                       | (defined by OEM)      |
| 8      | (unused)   | This partition is reserved for future use                         | (none)                |
| 9      | ROOT       | Stateful partition for storing persistent data                    | EXT4, BTRFS, or XFS   |

For more information, read more about the disk layout [http://www.chromium.org/chromium-os/chromiumos-design-docs/disk-format] used by Chromium and ChromeOS, which inspired the layout used by Container Linux.




Mounted filesystems

Container Linux is divided into two main filesystems, a read-only /usr and a stateful read/write /.


Read-only /usr

The USR-A or USR-B partitions are interchangeable and one of the two is mounted as a read-only filesystem at /usr. After an update, Container Linux will re-configure the GPT priority attribute, instructing the bootloader to boot from the passive (newly updated) partition. Here’s an example of the priority flags set on an Amazon EC2 machine:

$ sudo cgpt show /dev/xvda
       start        size    part  contents
      270336     2097152       3  Label: "USR-A"
                                  Type: Alias for coreos-rootfs
                                  UUID: 7130C94A-213A-4E5A-8E26-6CCE9662F132
                                  Attr: priority=1 tries=0 successful=1





Container Linux images ship with the USR-B partition empty to reduce the image filesize. The first Container Linux update will populate it and start the normal active/passive scheme.

The OEM partition is also mounted as read-only at /usr/share/oem.




Stateful root

All stateful data, including container images, is stored within the read/write filesystem mounted at /. On first boot, the ROOT partition and filesystem will expand to fill any remaining free space at the end of the drive.

The data stored on the root partition isn’t manipulated by the update process. In return, we do our best to prevent you from modifying the data in /usr.

Due to the unique disk layout of Container Linux, an rm -rf --one-file-system --no-preserve-root / is an unsupported but valid operation to purge any OS data. On the next boot, the machine should just start from a clean state.

To re-provision the node after such cleanup, use touch /boot/coreos/first_boot to trigger Ignition to run once again on the next boot.









          

      

      

    

  

  
    
    CoreOS Container Linux developer SDK guide
    

    
 
  

    
      
          
            
  
CoreOS Container Linux developer SDK guide

These are the instructions for building Container Linux itself. By the end of the guide you will build a developer image that you can run under KVM and have tools for making changes to the code.

Container Linux is an open source project. All of the source for Container Linux is available on github [https://github.com/coreos/]. If you find issues with these docs or the code please send a pull request.

Direct questions and suggestions to the IRC channel or mailing list [https://groups.google.com/forum/#%21forum/coreos-dev].


Getting started

Let’s get set up with an SDK chroot and build a bootable image of Container Linux. The SDK chroot has a full toolchain and isolates the build process from quirks and differences between host OSes. The SDK must be run on an x86-64 Linux machine, the distro should not matter (Ubuntu, Fedora, etc).


Prerequisites

System requirements to get started:


	curl


	git


	bzip2


	gpg


	sudo




You also need a proper git setup:

git config --global user.email "you@example.com"
git config --global user.name "Your Name"





NOTE: Do the git configuration as a normal user and not with sudo.




Using Cork

The cork utility, included in the CoreOS mantle [https://github.com/coreos/mantle] project, is used to create and work with an SDK chroot.

First, download the cork utility:

curl -L -o cork https://github.com/coreos/mantle/releases/download/v0.12.0/cork-0.12.0-amd64
curl -L -o cork.sig https://github.com/coreos/mantle/releases/download/v0.12.0/cork-0.12.0-amd64.sig





Now, verify the download with the signature:

gpg --keyserver keys.gnupg.net --recv-keys 9CEB8FE6B4F1E9E752F61C82CDDE268EBB729EC7
gpg --verify cork.sig cork





Alternatively, you could use gpg2 instead of gpg:

gpg2 --receive-keys 9CEB8FE6B4F1E9E752F61C82CDDE268EBB729EC7
gpg2 --verify cork.sig cork





gpg --verify and gpg2 --verify commands should output something like this:

gpg: Signature made Thu 19 Apr 2018 03:33:40 PM PDT
gpg:                using RSA key 9CEB8FE6B4F1E9E752F61C82CDDE268EBB729EC7
gpg: Good signature from "CoreOS Application Signing Key <security@coreos.com>" [unknown]
Primary key fingerprint: 18AD 5014 C99E F7E3 BA5F  6CE9 50BD D3E0 FC8A 365E
     Subkey fingerprint: 9CEB 8FE6 B4F1 E9E7 52F6  1C82 CDDE 268E BB72 9EC7





Then proceed with the installation of the cork binary to a location on your path:

chmod +x cork
mkdir -p ~/.local/bin
mv cork ~/.local/bin
export PATH=$PATH:$HOME/.local/bin





You may want to add the PATH export to your shell profile (e.g. .bashrc).

Next, use the cork utility to create a project directory. This will hold all of your git repos and the SDK chroot. A few gigabytes of space will be necessary.

mkdir coreos-sdk
cd coreos-sdk
cork create # This will request root permisions via sudo
cork enter  # This will request root permisions via sudo





Verify you are in the SDK chroot:

$ grep NAME /etc/os-release
NAME="Container Linux by CoreOS"





To leave the SDK chroot, simply run exit.

To use the SDK chroot in the future, run cork enter from the above directory.




Building an image


Set up the chroot

After entering the chroot via cork for the first time, you should set user core’s password:

./set_shared_user_password.sh





This is the password you will use to log into the console of images built and launched with the SDK.

Then, to create a root filesystem for the amd64-usr build target beneath the directory /build/amd64-usr/:

./setup_board








Compile and link system binaries

Build all of the target binary packages:

./build_packages








Render the CoreOS Container Linux image

Build a production image based on the binary packages built above:

./build_image





After build_image completes, it prints commands for converting the raw bin into a bootable virtual machine. Run the image_to_vm.sh command.






Booting

Once you build an image you can launch it with KVM (instructions will print out after image_to_vm.sh runs).

If you encounter errors with KVM, verify that virtualization is supported by your CPU by running egrep '(vmx|svm)' /proc/cpuinfo. The /dev/kvm directory will be in your host OS when virtualization is enabled in the BIOS.

The ./coreos_production_qemu.sh file can be found in the ~/trunk/src/build/images/amd64-usr/latest directory inside the SDK chroot.


Boot Options

After image_to_vm.sh completes, run ./coreos_production_qemu.sh -curses to launch a graphical interface to log in to the Container Linux VM.

You could instead use the -nographic option, ./coreos_production_qemu.sh -nographic, which gives you the ability to switch from the VM to the QEMU monitor console by pressing CTRL+a and then c. To close the Container Linux Guest OS VM, run sudo systemctl poweroff inside the VM.

You could also log in via SSH by running ./coreos_production_qemu.sh and then running ssh core@127.0.0.1 -p 2222 to enter the guest OS. Running without the -p 2222 option will arise a ssh: connect to host 127.0.0.1 port 22: Connection refused or Permission denied (publickey,gssapi-keyex,gssapi-with-mic) warning. Additionally, you can log in via SSH keys or with a different ssh port by running this example ./coreos_production_qemu.sh -a ~/.ssh/authorized_keys -p 2223 -- -curses. Refer to the Booting with QEMU guide for more information on this usage.

The default login username is core and the password is the one set in the ./set_shared_user_password step of this guide. If you forget your password, you will need to rerun ./set_shared_user_password and then ./build_image again.








Making changes


git and repo

Container Linux is managed by repo, a tool built for the Android project that makes managing a large number of git repositories easier. From the repo announcement blog:


The repo tool uses an XML-based manifest file describing where the upstream
repositories are, and how to merge them into a single working checkout. repo
will recurse across all the git subtrees and handle uploads, pulls, and other
needed items. repo has built-in knowledge of topic branches and makes working
with them an essential part of the workflow.




(from the Google Open Source Blog [http://google-opensource.blogspot.com/2008/11/gerrit-and-repo-android-source.html])

You can find the full manual for repo by visiting android.com - Developing [https://source.android.com/source/developing.html].




Updating repo manifests

The repo manifest for Container Linux lives in a git repository in
.repo/manifests. If you need to update the manifest edit default.xml
in this directory.

repo uses a branch called ‘default’ to track the upstream branch you
specify in repo init, this defaults to ‘origin/master’. Keep this in
mind when making changes, the origin git repository should not have a
‘default’ branch.






Building images

There are separate workflows for building production images and development images.




Tips and tricks

We’ve compiled a list of tips and tricks that can make working with the SDK a bit easier.




Testing images

Mantle [https://github.com/coreos/mantle] is a collection of utilities used in testing and launching SDK images.







          

      

      

    

  

  
    
    Mantle: gluing CoreOS Container Linux together
    

    
 
  

    
      
          
            
  
Mantle: gluing CoreOS Container Linux together

Mantle is a collection of utilities for the Container Linux SDK.


plume index

Generate and upload index.html objects to turn a Google Cloud Storage bucket into a publicly browsable file tree. Useful if you want something like Apache’s directory index for your software download repository.




plume gce cluster launching

Related commands to launch instances on Google Compute Engine(gce) with the latest SDK image. SSH keys should be added to the gce project metadata before launching a cluster. All commands have flags that can overwrite the default project, bucket, and other settings. plume help <command> can be used to discover all the switches.


plume upload

Upload latest SDK image to Google Storage and then create a gce image. Assumes an image packaged with the flag --format=gce is present. Common usage for Container Linux devs using the default bucket and project is:

plume upload




plume list-images

Print out gce images from a project. Common usage:

plume list-images




plume create-instances

Launch instances on gce. SSH keys should be added to the metadata section of the gce developers console. Common usage:

plume create-instances -n=3 -image=<gce image name> -config=<cloud config file>




plume list-instances

List running gce instances. Common usage:

plume list-instances




plume destroy-instances

Destroy instances on gce based by prefix or name. Images created with create-instances use a common basename as a prefix that can also be used to tear down the cluster. Common usage:

plume destroy-instances -prefix=$USER






kola

Test framework for Container Linux integration testing. Launch groups of related tests using the latest SDK image on specified platforms (qemu, gce …)







          

      

      

    

  

  
    
    Tips and tricks
    

    
 
  

    
      
          
            
  
Tips and tricks


Finding all open pull requests and issues


	CoreOS Issues [https://github.com/issues?user=coreos]


	CoreOS Pull Requests [https://github.com/pulls?user=coreos]







Searching all repo code

Using repo grep you can search across all of the Git repos at once:

repo grep CONFIG_EXTRA_FIRMWARE





Note: this could take some time.


Base system dependency graph

Get a view into what the base system will contain and why it will contain those things with the emerge tree view:

emerge-amd64-usr --emptytree -p -v --tree coreos-base/coreos-dev










Add new upstream package

An overview on contributing new packages to Container Linux:


	create a git branch for the work


	fetch the the target package(s) from upstream (Gentoo)


	make any necessary changes for Container Linux


	add the package(s) as a dependency of coreos-base/coreos


	build the package(s) and test


	commit changes to git


	push the branch to your GitHub account and create a pull request




See CONTRIBUTING [https://github.com/coreos/etcd/blob/master/CONTRIBUTING] for guidelines before you push.

The following Container Linux repositories are used:


	Packages that will work unmodified are versioned in src/third_party/portage-stable


	Packages with Container-Linux-specific changes are versioned in src/third_party/coreos-overlay




Use repo start to create a work branch before making any changes.

~/trunk/src/scripts $ repo start my_package_update --all 





You can use scripts/update_ebuilds to fetch unmodified packages into src/third_party/portage-stable and add the files to git. The package argument should be in the format of category/package-name, e.g.:

~/trunk/src/scripts $ ./update_ebuilds sys-block/open-iscsi





Modified packages must be moved out of src/third_party/portage-stable to src/third_party/coreos-overlay.

If you know in advance that any files in the upstream package will need to be changed, the package can be fetched from upstream Gentoo directly into src/third_party/coreos-overlay. e.g.:

~/trunk/src/third_party/coreos-overlay $ mkdir -p sys-block/open-iscsi
~/trunk/src/third_party/coreos-overlay $ rsync -av rsync://rsync.gentoo.org/gentoo-portage/sys-block/open-iscsi/ sys-block/open-iscsi/





The tailing / prevents rsync from creating the directory for the package so you don’t end up with sys-block/open-iscsi/open-iscsi. Remember to add any new files to git.

To quickly test your new package(s), use the following commands:

~/trunk/src/scripts $ # Manually merge a package in the chroot
~/trunk/src/scripts $ emerge-amd64-usr packagename
~/trunk/src/scripts $ # Manually unmerge a package in the chroot
~/trunk/src/scripts $ emerge-amd64-usr --unmerge packagename
~/trunk/src/scripts $ # Remove a binary from the cache
~/trunk/src/scripts $ sudo rm /build/amd64-usr/packages/catagory/packagename-version.tbz2





To recreate the chroot prior to a clean rebuild, exit the chroot and run:

~/coreos-sdk $ cork create --replace





To include the new package as a dependency of Container Linux, add the package to the end of the RDEPEND environment variable in coreos-base/coreos/coreos-0.0.1.ebuild then increment the revision of Container Linux by renaming the softlink (e.g.):

~/trunk/src/third_party/coreos-overly $ git mv coreos-base/coreos/coreos-0.0.1-r237.ebuild coreos-base/coreos/coreos-0.0.1-r238.ebuild





The new package will now be built and installed as part of the normal build flow when you run build_packages again.

If tests are successful, commit the changes, push to your GitHub fork and create a pull request.


Packaging references

References:


	Chromium OS Portage Build FAQ [http://www.chromium.org/chromium-os/how-tos-and-troubleshooting/portage-build-faq]


	Gentoo Development Guide [http://devmanual.gentoo.org/]


	Package Manager Specification [https://wiki.gentoo.org/wiki/Package_Manager_Specification]









Caching git https passwords

Turn on the credential helper and git will save your password in memory for some time:

git config --global credential.helper cache





Note: You need git 1.7.10 or newer to use the credential helper

Why doesn’t Container Linux use SSH in the git remotes?  Because we can’t do anonymous clones from GitHub with an SSH URL.  This will be fixed eventually.




SSH config

You will be booting lots of VMs with on the fly ssh key generation. Add this in your $HOME/.ssh/config to stop the annoying fingerprint warnings.

Host 127.0.0.1
  StrictHostKeyChecking no
  UserKnownHostsFile /dev/null
  User core
  LogLevel QUIET








Hide loop devices from desktop environments

By default desktop environments will diligently display any mounted devices including loop devices used to construct Container Linux disk images. If the daemon responsible for this happens to be udisks then you can disable this behavior with the following udev rule:

echo 'SUBSYSTEM=="block", KERNEL=="ram*|loop*", ENV{UDISKS_PRESENTATION_HIDE}="1", ENV{UDISKS_PRESENTATION_NOPOLICY}="1"' > /etc/udev/rules.d/85-hide-loop.rules
udevadm control --reload








Leaving developer mode

Some daemons act differently in “dev mode”. For example update_engine refuses to auto-update or connect to HTTPS URLs. If you need to test something out of dev_mode on a vm you can do the following:

mv /root/.dev_mode{,.old}





If you want to permanently leave you can run the following:

crossystem disable_dev_request=1; reboot








Use binary packages from nightly builds

Some packages like coreos-modules take a long time to build, but are also built as part of the nightly build. Use

./build_packages --getbinpkgver=$(gsutil cat gs://builds.developer.core-os.net/boards/amd64-usr/current-master/version.txt |& sed -n 's/^COREOS_VERSION=//p')





To use packages from the nightly build.




Known issues


build_packages fails on coreos-base

Sometimes coreos-dev or coreos builds will fail in build_packages with a backtrace pointing to epoll. This hasn’t been tracked down but running build_packages again should fix it. The error looks something like this:

Packages failed:
coreos-base/coreos-dev-0.1.0-r63
coreos-base/coreos-0.0.1-r187








Newly added package fails checking for kernel sources

It may be necessary to comment out kernel source checks from the ebuild if the build fails, as Container Linux does not yet provide visibility of the configured kernel source at build time.  Usually this is not a problem, but may lead to warning messages.




coreos-kernel fails to link after previously aborting a build

Emerging coreos-kernel (either manually or through build_packages) may fail with the error:

/usr/lib/gcc/x86_64-pc-linux-gnu/4.9.4/../../../../x86_64-pc-linux-gnu/bin/ld: scripts/kconfig/conf.o: relocation R_X86_64_32 against `.rodata.str1.8' can not be used when making a shared object; recompile with -fPIC scripts/kconfig/conf.o: error adding symbols: Bad value





This indicates the ccache is corrupt. To clear the ccache, run:

CCACHE_DIR=/var/tmp/ccache ccache -C





To avoid corrupting the ccache, do not abort builds.




build_image hangs while emerging packages after previously aborting a build

Delete all *.portage_lockfiles in /build/<arch>/. To avoid stale lockfiles, do not abort builds.









          

      

      

    

  

  
    
    SELinux on CoreOS Container Linux
    

    
 
  

    
      
          
            
  
SELinux on CoreOS Container Linux

SELinux is a fine-grained access control mechanism integrated into Container Linux and rkt. Each container runs in its own independent SELinux context, increasing isolation between containers and providing another layer of protection should a container be compromised.

Container Linux implements SELinux, but currently does not enforce SELinux protections by default. This allows deployers to verify container operation before enabling SELinux enforcement. This document covers the process of checking containers for SELinux policy compatibility, and switching SELinux into enforcing mode.


Check a container’s compatibility with SELinux policy

To verify whether the current SELinux policy would inhibit your containers, enable SELinux logging. In the following set of commands, we delete the rules that suppress this logging by default, and copy the policy store from Container Linux’s read-only /usr to a writable file system location.

$ rm /etc/audit/rules.d/80-selinux.rules
$ rm /etc/audit/rules.d/99-default.rules
$ rm /etc/selinux/mcs
$ cp -a /usr/lib/selinux/mcs /etc/selinux
$ rm /var/lib/selinux
$ cp -a /usr/lib/selinux/policy /var/lib/selinux
$ semodule -DB
$ systemctl restart audit-rules





Now run your container. Check the system logs for any messages containing avc: denied. Such messages indicate that an enforcing SELinux would prevent the container from performing the logged operation. Please open an issue at coreos/bugs [https://github.com/coreos/bugs/issues], including the full avc log message.




Enable SELinux enforcement

Once satisfied that your container workload is compatible with the SELinux policy, you can temporarily enable enforcement by running the following command as root:

$ setenforce 1

A reboot will reset SELinux to permissive mode.


Make SELinux enforcement permanent

To enable SELinux enforcement across reboots, replace the symbolic link /etc/selinux/config with the file it targets, so that the file can be written. You can use the readlink command to dereference the link, as shown in the following one-liner:

$ cp --remove-destination $(readlink -f /etc/selinux/config) /etc/selinux/config

Now, edit /etc/selinux/config to replace SELINUX=permissive with SELINUX=enforcing.






Limitations

SELinux enforcement is currently incompatible with Btrfs volumes and volumes that are shared between multiple containers.







          

      

      

    

  

  
    
    Adding SSH keys for VMWare
    

    
 
  

    
      
          
            
  
Adding SSH keys for VMWare

Most installations of Container Linux on VMWare require an SSH key to access the machine. Use a Container Linux Config [https://coreos.com/os/docs/latest/provisioning.html] with a valid SSH key and the Config Transpiler [https://coreos.com/os/docs/latest/overview-of-ct.html] to create the ignition config. Then pass that ignition config to the VMWare image’s VMX file to enable SSH access to the machine.

Modify the VMX file to pass an Ignition Config [https://coreos.com/os/docs/latest/provisioning.html#ignition-config] containing at least one valid SSH key.

First, follow the instructions to Boot with VMware Workstation 12 or VMware Fusion to create a VM. (Do not start / power on the the VM. These instructions will work only on the first boot.)

Next, create and apply the SSH key:


	Download Config Transpiler [https://github.com/coreos/container-linux-config-transpiler/releases/].


	Follow the instructions to add an SSH public key [https://coreos.com/os/docs/latest/migrating-to-clcs.html#ssh_authorized_keys] to the Container Linux Config (for example id_rsa.pub).




passwd:
  users:
    - name: core
      ssh_authorized_keys:
        - "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC0g+ZTxC7weoIJLUafOgrm+h..."






	Use Config Transpiler to convert the Container Linux Config YAML to Ignition Config, then base64 encode the Ignition config.




$ ./ct --in-file config.yaml | base64





Remove any newline characters from the encoded output.


	Open the VM’s VMX file in your favorite text editor, and add the base64 encoded Ignition Config to the VMWare image’s VMX file under Guestinfo as outlined in Defining the Ignition config in Guestinfo [https://coreos.com/os/docs/latest/booting-on-vmware.html#defining-the-ignition-config-in-guestinfo].




guestinfo.coreos.config.data = "<<Output of the base64 encoded ignition file>>>"
guestinfo.coreos.config.data.encoding = "base64"






	Save the VMX file and boot the VM for the first time.




Once booted, use $ ssh core@<<ip address>> to SSH into the machine. If you haven’t added the SSH key to the SSH agent, specify the key using the -i flag:

$ ssh -i <<path to ssh public key>> core@<<ip address>>





          

      

      

    

  

  
    
    Configuring SSSD on CoreOS Container Linux
    

    
 
  

    
      
          
            
  
Configuring SSSD on CoreOS Container Linux

Container Linux ships with the System Security Services Daemon, allowing integration between Container Linux and enterprise authentication services.


Configuring SSSD

Edit /etc/sssd/sssd.conf. This configuration file is fully documented here [https://jhrozek.fedorapeople.org/sssd/1.13.1/man/sssd.conf.5.html]. For example, to configure SSSD to use an IPA server called ipa.example.com, sssd.conf should read:

[sssd]
config_file_version = 2
services = nss, pam
domains = LDAP
[nss]
[pam]
[domain/LDAP]
id_provider = ldap
auth_provider = ldap
ldap_schema = ipa
ldap_uri = ldap://ipa.example.com








Start SSSD

sudo systemctl start sssd








Make SSSD available on future reboots

sudo systemctl enable sssd











          

      

      

    

  

  
    
    Switching release channels
    

    
 
  

    
      
          
            
  
Switching release channels

Container Linux is designed to be updated automatically [https://coreos.com/why/#updates] with different schedules per channel. You can disable this feature, although we don’t recommend it. Read the release notes [https://coreos.com/releases] for specific features and bug fixes.

By design, the Container Linux update engine does not execute downgrades. If you’re switching from a channel with a higher Container Linux version than the new channel, your machine won’t be updated again until the new channel contains a higher version number.

[image: ../_images/update-timeline.png]Update Timeline


Customizing channel configuration

The update engine sources its configuration from /usr/share/coreos/update.conf and /etc/coreos/update.conf.
The former file contains the default hardcoded configuration from the running OS version. Its values cannot be edited, but they can be overridden by the ones in the latter file.

To switch a machine to a different channel, specify the new channel group in /etc/coreos/update.conf:

GROUP=beta





In order for the configuration override to take effect, the update engine must first be restarted:

sudo systemctl restart update-engine








Debugging

After the update engine is restarted, the machine should check for an update within an hour.

The live status of updates checking can queried via:

update_engine_client --status





The update engine logs all update attempts, which can inspected in the system journal:

journalctl -f -u update-engine





For reference, the OS version and channel for a running system can be determined via:

cat /usr/share/coreos/os-release

cat /usr/share/coreos/update.conf





Note: while a manual channel switch is in progress, /usr/share/coreos/update.conf shows the channel for the current OS while /etc/coreos/update.conf shows the one for the next update.







          

      

      

    

  

  
    
    Hosting custom Torcx remotes
    

    
 
  

    
      
          
            
  
Hosting custom Torcx remotes


Remotes Overview

A Torcx remote [https://github.com/coreos/torcx/blob/master/Documentation/design/remotes] is a collection of addon images for torcx, served from a remote source, which can be fetched by a host and used by torcx-generator.
A remote can be served via any traditional web server and content integrity and authenticity is digitally verified via OpenPGP signatures.




Content of a remote

A Torcx remote is a collection of static files, providing Torcx addon images over HTTP(S) to Container Linux nodes.

Main elements of a Torcx remote are:


	base URL: base URL for the remote. Supported protocols are http and https.


	content manifest: a list of images provided by this remote. It is a JSON document with a fixed schema [https://github.com/coreos/torcx/blob/master/Documentation/schemas/remote-contents-v1], wrapped in an OpenPGP cleartext signature.


	images: tarballs or squashfs [https://www.kernel.org/doc/Documentation/filesystems/squashfs.txt] images containing Torcx addons







Creating a Torcx remote

Torcx remotes are meant to be self-contained below their base URL.

Clients will first look for the content manifest named torcx_remote_contents.json.asc to discover the addon images available on a Torcx remote.

A sample remote, hosting a single my-addon:1 image as a squashfs, will have a manifest like the following:

{
  "kind": "torcx-remote-contents-v1",
  "value": {
    "images": [
      {
        "name": "my-addon",
        "versions": [
          {
            "version": "1",
            "format": "squashfs",
            "hash": "sha512-68f06d394fbdeb3b214bae0761f9f10badf94d6e1bc7360864df8310dce31eb0a9e10829c29fdecbad0ae13145cffa21afd7e8dd062a36cc84453cbe4b0cf29e",
            "location": "images/my-addon:1.torcx.squashfs"
          }
        ]
      }
    ]
  }
}





In order to be properly used as a contents manifest, such JSON snippet has to be clearsigned with gpg as follows:

$ gpg2 --output torcx_remote_contents.json.asc --clear-sign sample-manifest.json








Hosting a Torcx remote

Contents for a remote Torcx like the one described above can be hosted anywhere on a web server, as long as they rooted under the appropriate base url.

Assuming the hosting site is https://torcx-remotes.example.com/my-remote/ and the remote it targeted at an amd64 Container Linux node at version 1855.4.0, remote layout would look as follows:

 - https://torcx-remotes.example.com/my-remote/amd64-usr/1855.4.0/
   - /torcx_manifest.json.asc
   - /images/
     - /my-addon:1.torcx.squashfs





Such remote can be consumed using the base URL https://torcx-remotes.example.com/my-remote/${COREOS_BOARD}/${VERSION_ID}/.
In order to provision the corresponding configuration on consuming nodes, please follow the Torcx remotes usage guide.




Usage notes

Please note that remote instances are specifically bound to a single OS architecture and version, as there is no ABI compatibility guarantee across different Container Linux releases.

In order to support upgrades through the lifecycle of a Container Linux node, it is enough to instantiate new remotes matching the ${VERSION_ID} of consuming nodes.







          

      

      

    

  

  
    
    Torcx metadata and systemd target
    

    
 
  

    
      
          
            
  
Torcx metadata and systemd target

In many cases, it is desirable to inspect the state of a system booted with Torcx and to verify the details of the configuration that has been applied.
For this purpose, Torcx comes with additional facilities to integrate with systemd-based workflows: a custom target and a metadata file containing environment flags.


Metadata entries and environment flags

In order to signal a successful run, Torcx writes a metadata file at most once per boot. The format of this file is suitable for consumption by the systemd EnvironmentFile= directive [https://www.freedesktop.org/software/systemd/man/systemd.exec.html#EnvironmentFile=] and can be used to introspect the booted configuration at runtime.

The metadata file is written to /run/metadata/torcx and contains a list of key-value pairs:

$ cat /run/metadata/torcx

TORCX_LOWER_PROFILES="vendor"
TORCX_UPPER_PROFILE="custom-demo"
TORCX_PROFILE_PATH="/run/torcx/profile.json"
TORCX_BINDIR="/run/torcx/bin"
TORCX_UNPACKDIR="/run/torcx/unpack"





These values can be used to detect where assets have been unpacked and propagated (shown above as “unpack” and “bin” entries), which profiles have been sourced (both vendor- and user-provided), and what is the resulting profile that has been applied.

Finally, the runtime profile can be inspected to detect which addons (and versions) are currently applied:

$ cat /run/torcx/profile.json

{
  "kind": "profile-manifest-v0",
  "value": {
    "images": []
  }
}








Torcx target unit

System services may depend on successful execution of Torcx generator. As such, torcx.target is provided as a target unit which is only reachable if the generator successfully ran and sealed the system.

This target is not enabled by default, but can be referenced as a dependency by other units who want to introspect system status:

$ sudo systemctl cat torcx-echo.service

[Unit]
Description=Sample unit relying on torcx run
After=torcx.target
Requires=torcx.target

[Service]
EnvironmentFile=/run/metadata/torcx
Type=oneshot
ExecStart=/usr/bin/echo "torcx: applied ${TORCX_UPPER_PROFILE}"

[Install]
WantedBy=multi-user.target





$ sudo systemctl status torcx.target

● torcx.target - Verify torcx succeeded
   Loaded: loaded (/usr/lib/systemd/system/torcx.target; disabled; vendor preset: disabled)
   Active: active since [...]





$ sudo journalctl -u torcx-echo.service

localhost systemd[1]: Starting Sample unit relying on torcx run...
localhost echo[756]: torcx: applied custom-demo
localhost systemd[1]: Started Sample unit relying on torcx run.











          

      

      

    

  

  
    
    What is Torcx?
    

    
 
  

    
      
          
            
  
What is Torcx?

Torcx [https://github.com/coreos/torcx] is a new boot-time addon manager designed specifically for Container Linux. At the most basic level, it is a tool for applying ephemeral changes to an immutable system during early boot. This includes providing third-party binary addons and installing systemd units, which can vary across environments and boots. On every boot, Torcx reads its configuration from local disk and propagates specific assets provided by addon packages (which must be available in local stores).


Torcx overview

Torcx complements both the Ignition [https://coreos.com/ignition/docs/latest/] provisioning utility and systemd [https://www.freedesktop.org/wiki/Software/systemd/]. Torcx allows customization of Container Linux systems without requiring the compilation of custom system images. This goal is achieved by following two main principles: customizations are ephemeral, and they are applied exactly once per boot. Torcx also has a very simple design, with the aim of providing a small low-level system utility which can be driven by more advanced and higher-level tools.


Torcx execution model and systemd generators

Early in the boot process, execution starts in a minimal initramfs environment where systemd, Ignition, and other boot utilities run. Once up, execution continues by pivoting into the real root file system and by running all systemd generators [http://www.freedesktop.org/software/systemd/man/systemd.generator.html], including the main torcx component, torcx-generator.
torcx-generator runs serially before any other service starts to guarantee it does not race with other startup processes. However, this restricts Torcx to using only local resources. Torcx cannot access configuration or addons from remote file systems or network locations.




Profiles and addons

Torcx customizations are applied via local addon packages, which are referenced by profiles. Addons are simple tar-gzipped archives containing binary assets and a manifest. A user profile (upper profile) can be supplied by the administrator to be merged on top of hard-coded vendor and OEM profiles (lower profiles). Torcx will take care of computing and applying the resulting list of addons on the system.




Boot-time customizations

Torcx guarantees that customizations are applied at most once per boot, before any other service has been considered for startup. This provides a mechanism to customize most aspects of a Container Linux system in a reliable way, and avoids runtime upgrading/downgrading issues. Changes applied by Torcx are not persisted to disk, and therefore last exactly for the lifetime of a single boot of an instance.

By the same token, this should be read as a warning against abusing Torcx in the role of a general purpose container, service, or package manager. Torcx’s boot-transient model consumes memory with each addon, and, worse, would require system reboots for even simple upgrades.






Further design details

For further details on design and goals, Torcx repository contains extensive developer documentation [https://github.com/coreos/torcx/blob/master/Documentation].







          

      

      

    

  

  
    
    Troubleshooting Torcx
    

    
 
  

    
      
          
            
  
Troubleshooting Torcx

Torcx generator runs early in the boot, when other system facilities are not yet set up and available for use. In case of errors, troubleshooting and debugging can be performed following the suggestions described here.


Checking for failures

In case of errors, Torcx stops before sealing the new system state. This means that in order to check for correct execution, it is sufficient to verify that the metadata file exists:

$ test -f /run/metadata/torcx || echo 'torcx failed'





On failures, the metadata seal file will not exist, and torcx failed will be printed. Verify failure at boot time using the torcx.target unit:

$ sudo systemctl start torcx.target ; sudo systemctl status torcx.target

Assertion failed on job for torcx.target.

* torcx.target - Verify torcx succeeded
   Loaded: loaded (/usr/lib/systemd/system/torcx.target; disabled; vendor preset: disabled)
   Active: inactive (dead) since [...]
   Assert: start assertion failed at [...]
           AssertPathExists=/run/metadata/torcx was not met








Gathering logs

The single most useful piece of information needed when troubleshooting failure is the log from torcx-generator. This binary does not run as a typical systemd service, thus log filtering must be done via its syslog identifier.
With systemd-journald, this can be accomplished with the following command:

$ journalctl --boot 0 --identifier /usr/lib64/systemd/system-generators/torcx-generator





If this doesn’t yield results, run as root. There may be instances in which the journal isn’t owned by the systemd-journal group, or the current user is not part of that group.




Validating the configuration

One common cause for Torcx failure is a malformed configuration (such as a mis-assembled profile, or a syntax error). In other cases, the active profile might reference addon images which are no longer available on the system.







          

      

      

    

  

  
    
    Using custom Torcx remotes
    

    
 
  

    
      
          
            
  
Using custom Torcx remotes


Remotes Overview

A Torcx remote [https://github.com/coreos/torcx/blob/master/Documentation/design/remotes] is a collection of addon images for torcx, served from a remote source, which can be fetched by a node for use by torcx-generator.
Images for configured addons can be retrieved automatically on first-boot provisioning (i.e. in initramfs) and when preparing for new OS updates (i.e. before marking a node as “reboot needed”).




Usage notes

Before starting to configure Torcx remotes, a word of caution on their usage.
Torcx is not a full package manager, and trying to use it as such may result in unexpected behaviors.

In particular, there is no dependency resolution across addons, and images are supposed to be self-contained and re-built for each specific Container Linux version.

Provisioning images from remotes is coupled with both first-boot setup and OS upgrade mechanisms.
Configuring an image not available on a remote can result in first-boot provisioning failures or in blocked upgrades.

All of the above behaviors are by-design restrictions in order to minimize possible breakages at runtime.

Unless it is strictly required for very specific usecases, it is usually reccommended not use custom Torcx addons and remotes.




Provisioning a Torcx remote

Torcx remotes use a reverse-domain naming scheme, and can be configured on nodes during first-boot provisioning via a JSON manifest and an armored OpenPGP keyring.
The local manifest describes where a Torcx remote is located and which public keys to use for metadata verification, according to the documented schema [https://github.com/coreos/torcx/blob/master/Documentation/schemas/remote-manifest-v0].

A sample remote named com.example.my-remote signed by key 4C8413AA38176150A8906994BB1A3A854F3BBEBF can be provisioned with the following Container Linux Config snippet:

storage:
  files:
    - path: /etc/torcx/remotes/com.example.my-remote/remote.json
      filesystem: root
      mode: 0640
      contents:
        inline: |
          {
            "kind": "remote-manifest-v0",
            "value": {
              "base_url": "https://torcx-remotes.example.com/my-remote/${COREOS_BOARD}/${VERSION_ID}/",
              "keys": [
                { "armored_keyring": "4C8413AA38176150A8906994BB1A3A854F3BBEBF.pgp.asc" }
              ]
            }
          }

    - path: /etc/torcx/remotes/com.example.my-remote/4C8413AA38176150A8906994BB1A3A854F3BBEBF.pgp.asc
      filesystem: root
      mode: 0640
      contents:
        inline: |
          -----BEGIN PGP PUBLIC KEY BLOCK-----
          
          mQINBFPOTCkBEADVqHsjLwgh9RrDln/oOS3MQgYnYhI72IpAiNhp9j+kdKWCrc7S
          [...]
          DQzFS07A45A=
          =dYyN
          -----END PGP PUBLIC KEY BLOCK-----





The base URL for a remote is a templated string which is evaluated at runtime for simple variable substitution.
Commonly used variables include:


	${COREOS_BOARD}: board type (e.g. “amd64-usr”)


	${VERSION_ID}: OS version (e.g. “1680.2.0”)


	${ID}: OS vendor ID (e.g. “coreos”)







Enabling a Torcx addon from a remote

In order to use a Torcx addon from a remote, it must be configured in the active profile and it should reference the remote where it can be located.

After having configured the remote com.example.my-remote, provisioning an addon named my-addon at version 1 out of it can be done with the following configuration snippet:

storage:
  files:
    - path: /etc/torcx/profiles/my-profile.json
      filesystem: root
      mode: 0640
      contents:
        inline: |
          {
            "kind": "profile-manifest-v1",
            "value": {
              "images": [
                {
                  "name": "my-addon",
                  "reference": "1",
                  "remote": "com.example.my-remote"
                }
              ]
            }
          }
          
    - path: /etc/torcx/next-profile
      filesystem: root
      mode: 0640
      contents:
        inline: "my-profile\n"





Please note that a single user-profile can be active at any point, thus further customizations should be done directly against the profile manifest above.




Behavior on updates

Whenever a new OS update is available and before applying it to the running node, Update Engine [https://github.com/coreos/update_engine] checks and tries to provision all configured Torcx addons from remotes.

If it is not possible to provision any of the configured addons for the upcoming OS, the update will not applied and the process will be re-tried later.

This can happen if an addon is not anymore present on a remote, if the image matching the new OS version is not yet available, or in case of any other error when fetching from a remote.

In that case, errors will be logged to the system journal and can be inspected as follows:

$ sudo journalctl -t coreos-postinst











          

      

      

    

  

  
    
    Checking hardware and firmware support for CoreOS Container Linux Trusted Computing
    

    
 
  

    
      
          
            
  
Checking hardware and firmware support for CoreOS Container Linux Trusted Computing

Trusted Computing requires support in both system hardware and firmware. This document specifies the required support and explains how to determine if a physical machine has the features needed to enable Trusted Computing in Container Linux.


1. Check for Trusted Platform Module

Trusted Computing depends on the presence of a Trusted Platform Module (TPM). The TPM is a motherboard component responsible for storing the state of the system boot process, and providing a secure communication channel over which this state can be verified. To check for the presence of a TPM, install the latest Alpha version of Container Linux and try to list the TPM device file in the /sys system control filesystem:

# ls /sys/class/tpm/tpm0

If this returns an error, the system either does not have a TPM, or it is not enabled in the system firmware. Firmware configuration varies by system. Consult vendor documentation for details.




2. Check TPM version

Version 1.2 TPMs are currently supported. Read the TPM device ID file to discover the TPM version:

# cat /sys/class/tpm/tpm0/device/id

The contents of the id file vary for supported version 1.2 TPMs. It is simplest to check that the file does not contain the known string for unsupported version 2.0 TPMs, MSFT0101. Almost any other non-zero, non-error output from reading the id file indicates a supported version 1.2 TPM.

Support for version 2.0 TPMs identified with the MSFT0101 string will be added in a future Container Linux release.




3. Check TPM is enabled and active

The TPM device provides control files in the /sys filesystem, as seen above. Read the enabled and active files to check TPM status:

# cat /sys/class/tpm/tpm0/device/enabled
# cat /sys/class/tpm/tpm0/device/active





If either of these commands prints “0”, reconfigure the TPM by writing a code for TPM activation at the next system boot to the PPI request file:

# echo 6 > /sys/class/tpm/tpm0/device/ppi/request

Reboot the system and check TPM status again, as in Step 3.




4. Check boot measurement

The Container Linux bootloader will record the state of boot components during the boot process — measuring each part, in TPM parlance, and storing the result in its Platform Configuration Registers (PCR). Verify that this measurement has been successful by reading the TPM device’s pcrs file, a textual representation of the contents of all PCRs:

# cat /sys/class/tpm/tpm0/device/pcrs

Boot component measurements are recorded in PCRs 9 through 13. These positions in pcrs should all contain meaningful values; that is, values that are neither 0:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

nor max:

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF




Trusted

A system that passes each of the above tests supports Container Linux Trusted Computing and is actively measuring the boot process over the secure TPM channel.







          

      

      

    

  

  
    
    Reboot strategies on updates
    

    
 
  

    
      
          
            
  
Reboot strategies on updates

The overarching goal of Container Linux is to secure the Internet’s backend infrastructure. We believe that automatically updating [https://coreos.com/why/#updates] the operating system is one of the best tools to achieve this goal.

We realize that each Container Linux cluster has a unique tolerance for risk and the operational needs of your applications are complex. In order to meet everyone’s needs, there are three update strategies that we have developed based on feedback during our alpha period.

It’s important to note that updates are always downloaded to the passive partition when they become available. A reboot is the last step of the update, where the active and passive partitions are swapped (rollback instructions). These strategies control how that reboot occurs:

| Strategy      | Description                                                         |
|—————|———————————————————————|
| etcd-lock   | Reboot after first taking a distributed lock in etcd                |
| reboot      | Reboot immediately after an update is applied                       |
| off         | Do not reboot after updates are applied                             |


Reboot strategy options

The reboot strategy can be set with a Container Linux Config:

locksmith:
  reboot_strategy: "etcd-lock"






etcd-lock

The etcd-lock strategy mandates that each machine acquire and hold a reboot lock before it is allowed to reboot. The main goal behind this strategy is to allow for an update to be applied to a cluster quickly, without losing the quorum membership in etcd or rapidly reducing capacity for the services running on the cluster. The reboot lock is held until the machine releases it after a successful update.

The number of machines allowed to reboot simultaneously is configurable via a command line utility:

$ locksmithctl set-max 4
Old: 1
New: 4





This setting is stored in etcd so it won’t have to be configured for subsequent machines.

To view the number of available slots and find out which machines in the cluster are holding locks, run:

$ locksmithctl status
Available: 0
Max: 1

MACHINE ID
69d27b356a94476da859461d3a3bc6fd





If needed, you can manually clear a lock by providing the machine ID:

locksmithctl unlock 69d27b356a94476da859461d3a3bc6fd








Reboot immediately

The reboot strategy works exactly like it sounds: the machine is rebooted as soon as the update has been installed to the passive partition. If the applications running on your cluster are highly resilient, this strategy was made for you.




Off

The off strategy is also straightforward. The update will be installed onto the passive partition and await a reboot command to complete the update. We don’t recommend this strategy unless you reboot frequently as part of your normal operations workflow.






Updating PXE/iPXE machines

PXE/iPXE machines download a new copy of Container Linux every time they are started thus are dependent on the version of Container Linux they are served. If you don’t automatically load new Container Linux images into your PXE/iPXE server, your machines will never have new features or security updates.

An easy solution to this problem is to use iPXE and reference images directly from the Container Linux storage site. The alpha URL is automatically pointed to the new version of Container Linux as it is released.




Disable Automatic Updates Daemon

In case when you don’t want to install updates onto the passive partition and avoid update process on failure reboot, you can disable update-engine service manually with sudo systemctl stop update-engine command (it will be enabled automatically next reboot).

If you wish to disable automatic updates permanently, use can configure this with a Container Linux Config. This example will stop update-engine, which executes the updates, and locksmithd, which coordinates reboots across the cluster:

systemd:
  units:
    - name: update-engine.service
      mask: true
    - name: locksmithd.service
      mask: true
      command: stop
    - name: update-engine.service
      command: mask
    - name: locksmithd.service
      command: mask





Alternatively, to manually mask update-engine run systemctl mask update-engine.service. To reverse this remove the stanza from the cloud-config and run systemctl unmask update-engine.service




Updating Behind a Proxy

Public Internet access is required to contact CoreUpdate and download new versions of Container Linux. If direct access is not available the update-engine service may be configured to use a HTTP or SOCKS proxy using curl-compatible environment variables, such as HTTPS_PROXY or ALL_PROXY.
See curl’s documentation [http://curl.haxx.se/docs/manpage.html#ALLPROXY] for details.

systemd:
  units:
    - name: update-engine.service
      dropins:
        - name: 50-proxy.conf
          contents: |
            [Service]
            Environment=ALL_PROXY=http://proxy.example.com:3128





Proxy environment variables can also be set system-wide [https://coreos.com/os/docs/latest/using-environment-variables-in-systemd-units.html#system-wide-environment-variables].




Manually triggering an update

Each machine should check in about 10 minutes after boot and roughly every hour after that. If you’d like to see it sooner, you can force an update check, which will skip any rate-limiting settings that are configured in CoreUpdate.

$ update_engine_client -check_for_update
[0123/220706:INFO:update_engine_client.cc(245)] Initiating update check and install.








Auto-updates with a maintenance window

Locksmith supports maintenance windows in addition to the reboot strategies mentioned earlier. Maintenance windows define a window of time during which a reboot can occur. These operate in addition to reboot strategies, so if the machine has a maintenance window and requires a reboot lock, the machine will only reboot when it has the lock during that window.

Windows are defined by a start time and a length. In this example, the window is defined to be every Thursday between 04:00 and 05:00:

locksmith:
  reboot_strategy: reboot
  window_start: Thu 04:00
  window_length: 1h





This will configure a Container Linux machine to follow the reboot strategy, and thus when an update is ready it will simply reboot instead of attempting to grab a lock in etcd. This machine however has also been configured to only reboot between 04:00 and 05:00 on Thursdays, so if an update occurs outside of this window the machine will then wait until it is inside of this window to reboot.

For more information about the supported syntax, refer to the Locksmith documentation [https://github.com/coreos/locksmith#reboot-windows].







          

      

      

    

  

  
    
    Using environment variables in systemd units
    

    
 
  

    
      
          
            
  
Using environment variables in systemd units


Environment directive

systemd has an Environment directive which sets environment variables for executed processes. It takes a space-separated list of variable assignments. This option may be specified more than once in which case all listed variables will be set. If the same variable is set twice, the later setting will override the earlier setting. If the empty string is assigned to this option, the list of environment variables is reset, all prior assignments have no effect. Environments directives are used in built-in Container Linux systemd units, for example in etcd2 and flannel.

With the example below, you can configure your etcd2 daemon to use encryption. Just create /etc/systemd/system/etcd2.service.d/30-certificates.conf drop-in for etcd2.service:

[Service]
# Client Env Vars
Environment=ETCD_CA_FILE=/path/to/CA.pem
Environment=ETCD_CERT_FILE=/path/to/server.crt
Environment=ETCD_KEY_FILE=/path/to/server.key
# Peer Env Vars
Environment=ETCD_PEER_CA_FILE=/path/to/CA.pem
Environment=ETCD_PEER_CERT_FILE=/path/to/peers.crt
Environment=ETCD_PEER_KEY_FILE=/path/to/peers.key





Then run sudo systemctl daemon-reload and sudo systemctl restart etcd2.service to apply new environments to etcd2 daemon. You can read more about etcd2 certificates here.




EnvironmentFile directive

EnvironmentFile similar to Environment directive but reads the environment variables from a text file. The text file should contain new-line-separated variable assignments.

For example, in Container Linux, the coreos-metadata.service service creates /run/metadata/coreos. This environment file can be included by other services in order to inject dynamic configuration. Here’s an example of the environment file when run on DigitalOcean (the IP addresses have been removed):

COREOS_DIGITALOCEAN_IPV4_ANCHOR_0=X.X.X.X
COREOS_DIGITALOCEAN_IPV4_PRIVATE_0=X.X.X.X
COREOS_DIGITALOCEAN_HOSTNAME=test.example.com
COREOS_DIGITALOCEAN_IPV4_PUBLIC_0=X.X.X.X
COREOS_DIGITALOCEAN_IPV6_PUBLIC_0=X:X:X:X:X:X:X:X





This environment file can then be sourced and its variables used. Here is an example drop-in for etcd-member.service which starts coreos-metadata.service and then uses the generated results:

[Unit]
Requires=coreos-metadata.service
After=coreos-metadata.service

[Service]
EnvironmentFile=/run/metadata/coreos
ExecStart=
ExecStart=/usr/bin/etcd2 \
  --advertise-client-urls=http://${COREOS_DIGITALOCEAN_IPV4_PUBLIC_0}:2379 \
  --initial-advertise-peer-urls=http://${COREOS_DIGITALOCEAN_IPV4_PRIVATE_0}:2380 \
  --listen-client-urls=http://0.0.0.0:2379 \
  --listen-peer-urls=http://${COREOS_DIGITALOCEAN_IPV4_PRIVATE_0}:2380 \
  --initial-cluster=%m=http://${COREOS_DIGITALOCEAN_IPV4_PRIVATE_0}:2380








Other examples


Use host IP addresses and EnvironmentFile

You can also write your host IP addresses into /etc/network-environment file using this [https://github.com/kelseyhightower/setup-network-environment] utility. Then you can run your Docker containers following way:

[Unit]
Description=Nginx service
Requires=etcd2.service
After=etcd2.service
[Service]
# Get network environmental variables
EnvironmentFile=/etc/network-environment
ExecStartPre=-/usr/bin/docker kill nginx
ExecStartPre=-/usr/bin/docker rm nginx
ExecStartPre=/usr/bin/docker pull nginx
ExecStartPre=/usr/bin/etcdctl set /services/nginx '{"host": "%H", "ipv4_addr": ${DEFAULT_IPV4}, "port": 80}'
ExecStart=/usr/bin/docker run --rm --name nginx -p ${DEFAULT_IPV4}:80:80 nginx
ExecStop=/usr/bin/docker stop nginx
ExecStopPost=/usr/bin/etcdctl rm /services/nginx





This unit file will run nginx Docker container and bind it to specific IP address and port.




System wide environment variables

You can define system wide environment variables using a Container Linux Config as explained below:

storage:
  files:
    - path: /etc/systemd/system.conf.d/10-default-env.conf
      filesystem: root
      mode: 0644
      contents:
        inline: |
          [Manager]
          DefaultEnvironment=HTTP_PROXY=http://192.168.0.1:3128
    - path: /etc/profile.env
      filesystem: root
      mode: 0644
      contents:
        inline: |
          export HTTP_PROXY=http://192.168.0.1:3128





Where:


	/etc/systemd/system.conf.d/10-default-env.conf config file will set default environment variables for all systemd units.


	/etc/profile.env will set environment variables for all users logged in Container Linux.







etcd2.service unit advanced example

A complete example of combining environment variables and systemd drop-ins to reconfigure an existing machine running etcd.






More systemd examples

For more systemd examples, check out these documents:

Customizing Docker
Customizing the SSH Daemon
Using systemd Drop-In Units
etcd Cluster Runtime Reconfiguration on Container Linux




More Information

systemd.exec Docs
systemd.service Docs
systemd.unit Docs







          

      

      

    

  

  
    
    Using systemd and udev rules
    

    
 
  

    
      
          
            
  
Using systemd and udev rules

In our example we will use libvirt VM with Container Linux and run systemd unit on disk attach event. First of all we have to create systemd unit file /etc/systemd/system/device-attach.service:

[Service]
Type=oneshot
ExecStart=/usr/bin/echo 'device has been attached'





This unit file will be triggered by our udev rule.

Then we have to start udevadm monitor --environment to monitor kernel events.

Once you’ve attached virtio libvirt device (i.e. virsh attach-disk coreos /dev/VG/test vdc) you’ll see similar udevadm output:

UDEV  [545.954641] add      /devices/pci0000:00/0000:00:18.0/virtio4/block/vdb (block)
.ID_FS_TYPE_NEW=
ACTION=add
DEVNAME=/dev/vdb
DEVPATH=/devices/pci0000:00/0000:00:18.0/virtio4/block/vdb
DEVTYPE=disk
ID_FS_TYPE=
MAJOR=254
MINOR=16
SEQNUM=1327
SUBSYSTEM=block
USEC_INITIALIZED=545954447





According to text above udev generates event which contains directives (ACTION=add and SUBSYSTEM=block) we will use in our rule. It should look this way:

ACTION=="add", SUBSYSTEM=="block", TAG+="systemd", ENV{SYSTEMD_WANTS}="device-attach.service"





That rule means that udev will trigger device-attach.service systemd unit on any block device attachment. Now when we use this command virsh attach-disk coreos /dev/VG/test vdc on host machine, we should see device has been attached message in Container Linux node’s journal. This example should be similar to USB/SAS/SATA device attach.


Container Linux Config example

To use the unit and udev rule with a Container Linux Config, modify this example as needed:

storage:
  files:
    - path: /etc/udev/rules.d/01-block.rules 
      filesystem: root
      mode: 0644
      contents:
        inline: |
          ACTION=="add", SUBSYSTEM=="block", TAG+="systemd", ENV{SYSTEMD_WANTS}="device-attach.service"
systemd:
  units:
    - name: device-attach.service
      contents: |
        [Unit]
        Description=Notify about attached device

        [Service]
        Type=oneshot
        ExecStart=/usr/bin/echo 'device has been attached'








More systemd examples

For more systemd examples, check out these documents:

Customizing Docker
Customizing the SSH Daemon
Using systemd Drop-In Units




More information

systemd.service Docs
systemd.unit Docs
systemd.target Docs
udev Docs







          

      

      

    

  

  
    
    Using systemd drop-in units
    

    
 
  

    
      
          
            
  
Using systemd drop-in units

There are two methods of overriding default Container Linux settings in unit files: copying the unit file from /usr/lib64/systemd/system to /etc/systemd/system and modifying the chosen settings. Alternatively, one can create a directory named unit.d within /etc/systemd/system and place a drop-in file name.conf there that only changes the specific settings one is interested in. Note that multiple such drop-in files are read if present.

The advantage of the first method is that one easily overrides the complete unit, the default Container Linux unit is not parsed at all anymore. It has the disadvantage that improvements to the unit file supplied by Container Linux are not automatically incorporated on updates.

The advantage of the second method is that one only overrides the settings one specifically wants, where updates to the original Container Linux unit automatically apply. This has the disadvantage that some future Container Linux updates might be incompatible with the local changes, but the risk is much lower.

Note that for drop-in files, if one wants to remove entries from a setting that is parsed as a list (and is not a dependency), such as ConditionPathExists= (or e.g. ExecStart= in service units), one needs to first clear the list before re-adding all entries except the one that is to be removed. See below for an example.

This also applies for user instances of systemd, but with different locations for the unit files. See the section on unit load paths in official systemd doc [http://www.freedesktop.org/software/systemd/man/systemd.unit.html] for further details.


Example: customizing locksmithd.service

Let’s review /usr/lib64/systemd/system/locksmithd.service unit (you can find it using this command: systemctl list-units | grep locksmithd) with the following contents:

[Unit]
Description=Cluster reboot manager
After=update-engine.service
ConditionVirtualization=!container
ConditionPathExists=!/usr/.noupdate

[Service]
CPUShares=16
MemoryLimit=32M
PrivateDevices=true
Environment=GOMAXPROCS=1
EnvironmentFile=-/usr/share/coreos/update.conf
EnvironmentFile=-/etc/coreos/update.conf
ExecStart=/usr/lib/locksmith/locksmithd
Restart=on-failure
RestartSec=10s

[Install]
WantedBy=multi-user.target





Let’s walk through increasing the RestartSec parameter via both methods:


Override only specific option

You can create a drop-in file /etc/systemd/system/locksmithd.service.d/10-restart_60s.conf with the following contents:

[Service]
RestartSec=60s





Then reload systemd, scanning for new or changed units:

systemctl daemon-reload





And restart modified service if necessary (in our example we have changed only RestartSec option, but if you want to change environment variables, ExecStart or other run options you have to restart service):

systemctl restart locksmithd.service





Here is how that could be implemented within a Container Linux Config:

systemd:
  units:
    - name: locksmithd.service
      enable: true
      dropins:
        - name: 10-restart_60s.conf
          contents: |
            [Service]
            RestartSec=60s





This change is small and targeted. It is the easiest way to tweak unit’s parameters.




Override the whole unit file

Another way is to override whole systemd unit. Copy default unit file /usr/lib64/systemd/system/locksmithd.service to /etc/systemd/system/locksmithd.service and change the chosen settings:

[Unit]
Description=Cluster reboot manager
After=update-engine.service
ConditionVirtualization=!container
ConditionPathExists=!/usr/.noupdate

[Service]
CPUShares=16
MemoryLimit=32M
PrivateDevices=true
Environment=GOMAXPROCS=1
EnvironmentFile=-/usr/share/coreos/update.conf
EnvironmentFile=-/etc/coreos/update.conf
ExecStart=/usr/lib/locksmith/locksmithd
Restart=on-failure
RestartSec=60s

[Install]
WantedBy=multi-user.target





Container Linux Config example:

systemd:
  units:
    - name: locksmithd.service
      enable: true
      contents: |
        [Unit]
        Description=Cluster reboot manager
        After=update-engine.service
        ConditionVirtualization=!container
        ConditionPathExists=!/usr/.noupdate

        [Service]
        CPUShares=16
        MemoryLimit=32M
        PrivateDevices=true
        Environment=GOMAXPROCS=1
        EnvironmentFile=-/usr/share/coreos/update.conf
        EnvironmentFile=-/etc/coreos/update.conf
        ExecStart=/usr/lib/locksmith/locksmithd
        Restart=on-failure
        RestartSec=60s

        [Install]
        WantedBy=multi-user.target








List drop-ins

To see all runtime drop-in changes for system units run the command below:

systemd-delta --type=extended










Other systemd examples

For another real systemd examples, check out these documents:

Customizing Docker
Customizing the SSH Daemon
Using Environment Variables In systemd Units




More Information

systemd.service Docs
systemd.unit Docs
systemd.target Docs







          

      

      

    

  

  
    
    Verify CoreOS Container Linux images with GPG
    

    
 
  

    
      
          
            
  
Verify CoreOS Container Linux images with GPG

CoreOS publishes new Container Linux images for each release across a variety of platforms and hosting providers. Each channel has its own set of images (stable [https://stable.release.core-os.net/amd64-usr/current/], beta [https://beta.release.core-os.net/amd64-usr/current/], alpha [https://alpha.release.core-os.net/amd64-usr/current/]) that are posted to our storage site. Along with each image, a signature is generated from the CoreOS Image Signing Key [https://coreos.com/security/image-signing-key] and posted.

After downloading your image, you should verify it with gpg tool. First, download the image signing key:

curl -O https://coreos.com/security/image-signing-key/CoreOS_Image_Signing_Key.asc





Next, import the public key and verify that the ID matches the website: CoreOS Image Signing Key [https://coreos.com/security/image-signing-key]

gpg --import --keyid-format LONG CoreOS_Image_Signing_Key.asc
gpg: key 50E0885593D2DCB4: public key "CoreOS Buildbot (Offical Builds) <buildbot@coreos.com>" imported
gpg: Total number processed: 1
gpg:               imported: 1  (RSA: 1)
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0  valid:   2  signed:   0  trust: 0-, 0q, 0n, 0m, 0f, 2u





Now we’re ready to download an image and it’s signature, ending in .sig. We’re using the QEMU image in this example:

curl -O https://stable.release.core-os.net/amd64-usr/current/coreos_production_qemu_image.img.bz2
curl -O https://stable.release.core-os.net/amd64-usr/current/coreos_production_qemu_image.img.bz2.sig





Verify image with gpg tool:

gpg --verify coreos_production_qemu_image.img.bz2.sig
gpg: Signature made Tue Jun 23 09:39:04 2015 CEST using RSA key ID E5676EFC
gpg: Good signature from "CoreOS Buildbot (Offical Builds) <buildbot@coreos.com>"





The Good signature message indicates that the file signature is valid. Go launch some machines now that we’ve successfully verified that this Container Linux image isn’t corrupt, that it was authored by CoreOS, and wasn’t tampered with in transit.





          

      

      

    

  

  
    
    Generating signing keys for ACI conversion
    

    
 
  

    
      
          
            
  
Generating signing keys for ACI conversion

This document explains how to add a pair of signing keys to your Quay Enterprise installation allowing Quay to sign container images after converting them to ACI format.


Download the generation script and config

Download the files aci-signing-key-batch.txt and generate-signing-keys.sh next to your configuration directory.

Make generate-signing-keys.sh executable:

chmod +x generate-signing-keys.sh








Edit the configuration

Edit the aci-signing-key-batch.txt configuration, replacing the email address, name, and comment with values appropriate for your site.




Run the generation script

Run the generate script, giving the name of an output directory as the argument:

./generate-signing-keys.sh outputdir





The script will create a pair of files beneath the given directory named signing-private.gpg and signing-public.gpg.

Generating initial keys
gpg: Generating a default key
gpg: done
Generating public signing key
Determining private key
Exporting private signing key
Private key name: CBFB447F
Cleaning up
Emitted outputdir/signing-private.gpg and outputdir/signing-public.gpg





Take note of the private key’s name (example from above: CBFB447F)




Enter config in superuser panel

Visit the Quay superuser panel. Upload the pair of key files, and enter the generated private key name. Save the configuration and restart Quay Enterprise to enable signing of converted ACIs.







          

      

      

    

  

  
    
    Controlling backwards compatibility with Docker Registry v1 and v2 protocols
    

    
 
  

    
      
          
            
  
Controlling backwards compatibility with Docker Registry v1 and v2 protocols

Since Quay Enterprise v1.14.0, Docker Registry v2 is supported, along with Docker Registry v1. Quay Enterprise is fully backward and forward compatible with both protocols. Thus, you can push and pull your images securely with any version of Docker Engine (≥0.10).

However, if for some reason, you still want to use Registry v1 for all or some of your Docker clients, it is possible to configure Quay Enterprise to prevent specific Docker versions (or ranges).

It is also possible to configure Quay Enterprise to prevent specific versions (or a range) from using v2.


Configuration

In order to configure Quay Enterprise to ‘blacklist’ some versions from using v2, you have to find and edit the configuration file (config.yaml), which was mounted into the container or added as a Kubernetes secret. Modify it to contain:

BLACKLIST_V2_SPEC = "<RULES>"





Note that <RULES> has to be replaced by actual rules, see examples below.




Rule examples


	BLACKLIST_V2_SPEC = "<1.6.0"


	This is the default rule. It means that every version earlier than 1.6.0 are prevented from using v2.






	BLACKLIST_V2_SPEC = "<=1.7.0,=1.7.2"


	Versions equals or earlier than 1.7.0 and 1.7.2 can’t use v2.


	BLACKLIST_V2_SPEC = "!=1.9.1"


	No version except 1.9.1 can use v2.










          

      

      

    

  

  
    
    Creating an OAuth Application in BitBucket
    

    
 
  

    
      
          
            
  
Creating an OAuth Application in BitBucket

This document describes how to authenticate Quay Enterprise users with their BitBucket [https://bitbucket.org] identities.


Add OAuth Consumer


	Log into BitBucket


	Visit the Settings page for your organization


	Click the “OAuth” tab under “Access Management”


	Click the Add Consumer button:







Configure the Callback URL

Next, configure BitBucket to redirect you back to your Quay Enterprise upon a successful login:


	Enter the Quay Enterprise URL as the URL


	Enter https://{REGISTRY URL HERE}/oauth2/bitbucket/callback as the Callback URL.


	Grant permissions on the repositories and webhooks:





	Save the application


	Record the Key and Secret shown in the new entry in the list of OAuth consumers after saving the application:







Return to Quay Enterprise setup

Return to the Quay Enterprise setup tool to enter the Key and Secret recorded above, and complete the setup procedure.







          

      

      

    

  

  
    
    BitTorrent-based distribution
    

    
 
  

    
      
          
            
  
BitTorrent-based distribution

Quay Enterprise supports BitTorrent-based distribution of its images to clients via the quayctl [https://github.com/coreos/quayctl] tool. BitTorrent-based distribution allows for machines to share image data amongst themselves, resulting in faster downloads and shorter production launch times.


Visit the management panel

Sign in to a super user account and visit http://yourregister/superuser to view the management panel:

[image: Quay Enterprise Management Panel]


Enable BitTorrent distribution

[image: Enable BitTorrent distribution]
	Click the configuration tab () and scroll down to the section entitled BitTorrent-based download.


	Check the “Enable BitTorrent downloads” box







Enter an announce URL

In the “Announce URL” field, enter the HTTP endpoint of a JWT-capable BitTorrent tracker’s announce URL such as Chihaya. This will typically be a URL ending in /announce.




Save configuration


	Click “Save Configuration Changes”


	Restart the container (you will be prompted)










          

      

      

    

  

  
    
    Automatically build Dockerfiles with build workers
    

    
 
  

    
      
          
            
  
Automatically build Dockerfiles with build workers

Quay Enterprise supports building Dockerfiles using a set of worker nodes. Build triggers, such as GitHub webhooks (Setup Instructions), can be configured to automatically build new versions of your repositories when new code is committed. This document will walk you through enabling the feature flag and setting up multiple build workers to enable this feature.


Visit the management panel

Sign in to a super user account and visit http://yourregister/superuser to view the management panel:

[image: Quay Enterprise Management Panel]


Enable Building

[image: Enable Dockerfile Build]
	Click the configuration tab () and scroll down to the section entitled Dockerfile Build Support.


	Check the “Enable Dockerfile Build” box


	Click “Save Configuration Changes”


	Restart the container (you will be prompted)







Setup the build workers

[image: Quay Enterprise Build Workers]One or more build workers will communicate with Quay Enterprise to build new containers when triggered. The machines must have Docker installed and must not be used for any other work. The following procedure needs to be done every time a new worker needs to be added, but it can be automated fairly easily.


Pull the build worker image

Pull down the latest copy of the image. Make sure to pull the version tagged matching your Quay Enterprise version.

docker pull quay.io/coreos/quay-builder:v2.9.3








Run the build worker image

Run this container on each build worker. Since the worker will be orchestrating docker builds, we need to mount in the docker socket. This orchestration will use a large amount of CPU and need to manipulate the docker images on disk — we recommend that dedicated machines be used for this task.

Use the environment variable SERVER to tell the worker the hostname at which Quay Enterprise is accessible:

| Security | Websocket Address |
|———-|——————-|
| Using SSL | wss://your.quayenterprise.dnsname |
| Without SSL | ws://your.quayenterprise.dnsname |

Here’s what the full command looks like:

docker run --restart on-failure -e SERVER=ws://myquayenterprise -v /var/run/docker.sock:/var/run/docker.sock quay.io/coreos/quay-builder:v2.9.3





When the container starts, each build worker will auto-register and start building containers once a job is triggered and it is assigned to a worker.

If Quay is setup to use a SSL certificate that is not globally trusted, for example a self-signed certificate, Quay’s public SSL certificates must be mounted onto the quay-builder container’s SSL trust store. An example command to mount a certificate found at the host’s /path/to/ssl/rootCA.pem looks like:

docker run --restart on-failure -e SERVER=wss://myquayenterprise -v /path/to/ssl/rootCA.pem:/usr/local/share/ca-certificates/rootCA.pem -v /var/run/docker.sock:/var/run/docker.sock --entrypoint /bin/sh quay.io/coreos/quay-builder:v2.9.3 -c '/usr/sbin/update-ca-certificates && quay-builder'








Setup GitHub build (optional)

If your organization plans to have builds be conducted via pushes to GitHub (or GitHub Enterprise), please continue
with the Setting up GitHub Build.









          

      

      

    

  

  
    
    Clair Setup
    

    
 
  

    
      
          
            
  
Clair Setup

[image: Clair Security Scanner]The Clair project is an open source engine that powers Quay Security Scanner to detect vulnerabilities in all images within Quay Enterprise, and notify developers as those issues are discovered.


Initial Setup


Postgres Database

In order to run Clair, a Postgres database is required. For production deployments, we recommend a PostgreSQL database running on machines other than those running Quay Enterprise, and ideally with automatic replication and failover.


Postgres database for testing

For testing purposes, a single PostgreSQL instance can be started locally:

docker run --name postgres -p 5432:5432 -d postgres
sleep 5
docker run --rm --link postgres:postgres postgres sh -c 'echo "create database clairtest" | psql -h "$POSTGRES_PORT_5432_TCP_ADDR" -p "$POSTGRES_PORT_5432_TCP_PORT" -U postgres'





The configuration string for this test database is postgresql://postgres@{DOCKER HOST GOES HERE}:5432/clairtest?sslmode=disable.






Download the Clair image

Pull the security-enabled Clair image:

docker pull quay.io/coreos/clair-jwt:v2.0.0








Make a configuration directory for Clair

mkdir clair-config
cd clair-config










Configure Clair

Clair can run either as a single instance or in high-availability mode. It is recommended to run more than a single instance of Clair, ideally in an auto-scaling group with automatic healing.

Create a config.yaml file in the config directory with the following contents, replacing appearances of { VARIABLE } with the appropriate value.


Clair configuration: High availability

clair:
  database:
    type: pgsql
    options:
      # A PostgreSQL Connection string pointing to the Clair Postgres database.
      # Documentation on the format can be found at: http://www.postgresql.org/docs/9.4/static/libpq-connect.html
      source: { POSTGRES_CONNECTION_STRING }
      cachesize: 16384
  api:
    # The port at which Clair will report its health status. For example, if Clair is running at
    # https://clair.mycompany.com, the health will be reported at
    # http://clair.mycompany.com:6061/health.
    healthport: 6061

    port: 6062
    timeout: 900s

    # paginationkey can be any random set of characters. *Must be the same across all Clair instances*.
    paginationkey: "XxoPtCUzrUv4JV5dS+yQ+MdW7yLEJnRMwigVY/bpgtQ="

  updater:
    # interval defines how often Clair will check for updates from its upstream vulnerability databases.
    interval: 6h
    notifier:
      attempts: 3
      renotifyinterval: 1h
      http:
        # QUAY_ENDPOINT defines the endpoint at which Quay Enterprise is running.
        # For example: https://myregistry.mycompany.com
        endpoint: { QUAY_ENDPOINT }/secscan/notify
        proxy: http://localhost:6063

jwtproxy:
  signer_proxy:
    enabled: true
    listen_addr: :6063
    ca_key_file: /certificates/mitm.key # Generated internally, do not change.
    ca_crt_file: /certificates/mitm.crt # Generated internally, do not change.
    signer:
      issuer: security_scanner
      expiration_time: 5m
      max_skew: 1m
      nonce_length: 32
      private_key:
        type: preshared
        options:
          # The ID of the service key generated for Clair. The ID is returned when setting up
          # the key in [Quay Enterprise Setup](security-scanning.md)
          key_id: { CLAIR_SERVICE_KEY_ID }
          private_key_path: /config/security_scanner.pem

  verifier_proxies:
  - enabled: true
    # The port at which Clair will listen.
    listen_addr: :6060

    # If Clair is to be served via TLS, uncomment these lines. See the "Running Clair under TLS"
    # section below for more information.
    # key_file: /config/clair.key
    # crt_file: /config/clair.crt

    verifier:
      # CLAIR_ENDPOINT is the endpoint at which this Clair will be accessible. Note that the port
      # specified here must match the listen_addr port a few lines above this.
      # Example: https://myclair.mycompany.com:6060
      audience: { CLAIR_ENDPOINT }

      upstream: http://localhost:6062
      key_server:
        type: keyregistry
        options:
          # QUAY_ENDPOINT defines the endpoint at which Quay Enterprise is running.
          # Example: https://myregistry.mycompany.com
          registry: { QUAY_ENDPOINT }/keys/








Clair configuration: Single instance

clair:
  database:
    type: pgsql
    options:
      # A PostgreSQL Connection string pointing to the Clair Postgres database.
      # Documentation on the format can be found at: http://www.postgresql.org/docs/9.4/static/libpq-connect.html
      source: { POSTGRES_CONNECTION_STRING }
      cachesize: 16384
  api:
    # The port at which Clair will report its health status. For example, if Clair is running at
    # https://clair.mycompany.com, the health will be reported at
    # http://clair.mycompany.com:6061/health.
    healthport: 6061

    port: 6062
    timeout: 900s

    # paginationkey can be any random set of characters. *Must be the same across all Clair instances*.
    paginationkey:

  updater:
    # interval defines how often Clair will check for updates from its upstream vulnerability databases.
    interval: 6h
    notifier:
      attempts: 3
      renotifyinterval: 1h
      http:
        # QUAY_ENDPOINT defines the endpoint at which Quay Enterprise is running.
        # For example: https://myregistry.mycompany.com
        endpoint: { QUAY_ENDPOINT }/secscan/notify
        proxy: http://localhost:6063

jwtproxy:
  signer_proxy:
    enabled: true
    listen_addr: :6063
    ca_key_file: /certificates/mitm.key # Generated internally, do not change.
    ca_crt_file: /certificates/mitm.crt # Generated internally, do not change.
    signer:
      issuer: security_scanner
      expiration_time: 5m
      max_skew: 1m
      nonce_length: 32
      private_key:
        type: autogenerated
        options:
          rotate_every: 12h
          key_folder: /config/
          key_server:
            type: keyregistry
            options:
              # QUAY_ENDPOINT defines the endpoint at which Quay Enterprise is running.
              # For example: https://myregistry.mycompany.com
              registry: { QUAY_ENDPOINT }/keys/


  verifier_proxies:
  - enabled: true
    # The port at which Clair will listen.
    listen_addr: :6060

    # If Clair is to be served via TLS, uncomment these lines. See the "Running Clair under TLS"
    # section below for more information.
    # key_file: /config/clair.key
    # crt_file: /config/clair.crt

    verifier:
      # CLAIR_ENDPOINT is the endpoint at which this Clair will be accessible. Note that the port
      # specified here must match the listen_addr port a few lines above this.
      # Example: https://myclair.mycompany.com:6060
      audience: { CLAIR_ENDPOINT }

      upstream: http://localhost:6062
      key_server:
        type: keyregistry
        options:
          # QUAY_ENDPOINT defines the endpoint at which Quay Enterprise is running.
          # Example: https://myregistry.mycompany.com
          registry: { QUAY_ENDPOINT }/keys/








Configuring Clair for TLS

To configure Clair to run with TLS, a few additional steps are required:


	Generate a TLS certificate and key pair for the DNS name at which Clair will be accessed


	Place these files as clair.crt and clair.key in your Clair configuration directory


	Uncomment the key_file and crt_file lines under verifier_proxies in your Clair config.yaml




If your certificates use a public CA, you are now ready to run Clair. If you are using your own certificate authority, configure Clair to trust it below.




Configuring trust of self-signed SSL

Similar to the process for setting up Docker to trust your self-signed certificates, Clair must also be configured to trust your certificates. Using the same CA certificate bundle used to configure Docker, complete the following steps:


	Rename the same CA certificate bundle used to set up Quay Registry to ca.crt


	Make sure the ca.crt file is mounted inside the Clair container under /usr/local/share/ca-certificates/ as in the example below:




docker run --restart=always -p 6060:6060 -p 6061:6061 -v /path/to/clair/config/directory:/config -v /path/to/quay/cert/ca.crt:/usr/local/share/ca-certificates/ca.crt  quay.io/coreos/clair-jwt:v2.0.0





Now Clair will be able to trust the source of your TLS certificates and use them to secure communication between Clair and Quay.






Run Clair

Execute the following command to run Clair:

docker run --restart=always -p 6060:6060 -p 6061:6061 -v /path/to/clair/config/directory:/config quay.io/coreos/clair-jwt:v2.0.0





Output similar to the following will be seen on success:

2016-05-04 20:01:05,658 CRIT Supervisor running as root (no user in config file)
2016-05-04 20:01:05,662 INFO supervisord started with pid 1
2016-05-04 20:01:06,664 INFO spawned: 'jwtproxy' with pid 8
2016-05-04 20:01:06,666 INFO spawned: 'clair' with pid 9
2016-05-04 20:01:06,669 INFO spawned: 'generate_mitm_ca' with pid 10
time="2016-05-04T20:01:06Z" level=info msg="No claims verifiers specified, upstream should be configured to verify authorization"
time="2016-05-04T20:01:06Z" level=info msg="Starting reverse proxy (Listening on ':6060')"
2016-05-04 20:01:06.715037 I | pgsql: running database migrations
time="2016-05-04T20:01:06Z" level=error msg="Failed to create forward proxy: open /certificates/mitm.crt: no such file or directory"
goose: no migrations to run. current version: 20151222113213
2016-05-04 20:01:06.730291 I | pgsql: database migration ran successfully
2016-05-04 20:01:06.730657 I | notifier: notifier service is disabled
2016-05-04 20:01:06.731110 I | api: starting main API on port 6062.
2016-05-04 20:01:06.736558 I | api: starting health API on port 6061.
2016-05-04 20:01:06.736649 I | updater: updater service is disabled.
2016-05-04 20:01:06,740 INFO exited: jwtproxy (exit status 0; not expected)
2016-05-04 20:01:08,004 INFO spawned: 'jwtproxy' with pid 1278
2016-05-04 20:01:08,004 INFO success: clair entered RUNNING state, process has stayed up for > than 1 seconds (startsecs)
2016-05-04 20:01:08,004 INFO success: generate_mitm_ca entered RUNNING state, process has stayed up for > than 1 seconds (startsecs)
time="2016-05-04T20:01:08Z" level=info msg="No claims verifiers specified, upstream should be configured to verify authorization"
time="2016-05-04T20:01:08Z" level=info msg="Starting reverse proxy (Listening on ':6060')"
time="2016-05-04T20:01:08Z" level=info msg="Starting forward proxy (Listening on ':6063')"
2016-05-04 20:01:08,541 INFO exited: generate_mitm_ca (exit status 0; expected)
2016-05-04 20:01:09,543 INFO success: jwtproxy entered RUNNING state, process has stayed up for > than 1 seconds (startsecs)





To verify Clair is running, execute the following command:

curl -X GET -I http://path/to/clair/here:6061/health





If a 200 OK code is returned, Clair is running:

HTTP/1.1 200 OK
Server: clair
Date: Wed, 04 May 2016 20:02:16 GMT
Content-Length: 0
Content-Type: text/plain; charset=utf-8








Continue with Quay Setup

Once Clair setup is complete, continue with Quay Security Scanner Setup.







          

      

      

    

  

  
    
    Configure machines for Quay Enterprise
    

    
 
  

    
      
          
            
  
Configure machines for Quay Enterprise

Quay Enterprise allows you to create user accounts and teams, or groups, of those users that mirror your existing org chart. A special type of user, a robot account, is designed to be used programatically by deployment systems and other pieces of software. Robot accounts are usually configured with read-only access to a repository.

This guide we will assume you have the DNS record registry.example.com configured to point to your Quay Enterprise installation.


Credentials

Each Container Linux machine needs to be configured with the username and password for a robot account in order to deploy your containers. Docker looks for configured credentials in a .dockercfg file located within the user’s home directory. You can download this file directly from the Quay Enterprise interface. Let’s assume you’ve created a robot account called myapp+deployment.

Writing the .dockercfg can be specified in a Container Linux Config with the files parameter, or created manually on each machine.


Kubernetes pull secret

If you are using Quay Enterprise in conjunction with a Kubernetes or Tectonic cluster, it’s easiest to use the built-in secret distribution method. This method allows for you to use different sets of robot accounts on a per-app basis, and also allows for them to be updated or rotated at any time across all machines in the cluster.

An “Image Pull Secret” is a special secret that Kubernetes will use when pulling down the containers in a pod. It is a base64-encoded Docker config file. Here’s an example:

$ cat ~/.dockercfg | base64
eyAiaHR0cHM6Ly9pbmRleC5kb2NrZXIuaW8vdjEvIjogeyAiYXV0aCI6ICJabUZyWlhCaGMzTjNiM0prTVRJSyIsICJlbWFpbCI6ICJqZG9lQGV4YW1wbGUuY29tIiB9IH0K





apiVersion: v1
kind: Secret
metadata:
  name: myappcreds
data:
  .dockercfg: eyAiaHR0cHM6Ly9pbmRleC5kb2NrZXIuaW8vdjEvIjogeyAiYXV0aCI6ICJabUZyWlhCaGMzTjNiM0prTVRJSyIsICJlbWFpbCI6ICJqZG9lQGV4YW1wbGUuY29tIiB9IH0K
type: kubernetes.io/dockercfg





To use this secret, first submit it into the cluster:

$ kubectl create -f /tmp/myappcreds.yaml
secrets/myappcreds






Reference pull secret with RC

Reference your new secret in a Replication Controller YAML definition:

apiVersion: v1
kind: ReplicationController
metadata:
  name: myapp
spec:
  replicas: 1
  selector:
    tier: webapp
  template:
    metadata:
      labels:
        tier: webapp
    spec:
      containers:
        - name: foo
          image: quay.io/coreos/etcd:v2.2.1
          ports:
            - containerPort: 2380
      imagePullSecrets:
        - name: myappcreds








Assign a default pull secret per namespace

To use a specific pull secret as the default in a specific namespace, you can create a Service Account [http://kubernetes.io/docs/user-guide/service-accounts/] that will be available to each pod. This is new in Kubernetes v1.1.






Container Linux Config

A snippet to configure the credentials via files in a Container Linux Config looks like:

storage:
  files:
    - path: /root/.dockercfg
      filesystem: root
      mode: 0644
      contents:
        inline: |
          {
           "https://registry.example.com/v1/": {
            "auth": "cm9ic3p1bXNrajYzUFFXSU9HSkhMUEdNMEISt0ZXN0OkdOWEVHWDRaSFhNUVVSMkI1WE9MM1k1S1R1VET0I1RUZWSVg3TFRJV1I3TFhPMUI=",
            "email": ""
           }
          }





Each machine booted with this Container Linux Config should automatically be authenticated with Quay Enterprise.




Manual login

To temporarily login to a Quay Enterprise account on a machine, run docker login:

$ docker login registry.example.com
Login against server at https://registry.example.com/v1/
Username: myapp+deployment
Password: GNXEGX4Y5J63PQWIOGJHLPGM0B5GUDOBZHXMQUR2B5XOL35EFVIX7LTIWR7LXO1B
Email: myemail@example.com










Test push or pull

Now that your machine is authenticated, try pulling one of your repositories. If you haven’t pushed a repository into your Quay Enterprise instance, you will need to tag it with the full name:

$ docker tag bf60637a656c registry.domain.com/myapp
$ docker push registry.domain.com/myapp





If you already have images in your registry, test out a pull:

docker pull registry.domain.com/myapp








Pulling via systemd

Assuming a .dockercfg is present in /root, the following is an example systemd unit file that pulls a docker image:

[Unit]
Description=Hello World

[Service]
WorkingDirectory=/root
ExecStartPre=-/usr/bin/docker kill hello-world
ExecStartPre=-/usr/bin/docker rm -f hello-world
ExecStartPre=/usr/bin/docker pull quay.io/example/hello-world:latest
ExecStart=/usr/bin/docker run --rm --name hello-world quay.io/example/hello-world:latest
ExecStop=-/usr/bin/docker stop hello-world





If the working directory is not set, docker will not be able to discover the .dockercfg file and will not have the credentials to pull private images.







          

      

      

    

  

  
    
    Redirecting syslog to /dev/stdout
    

    
 
  

    
      
          
            
  
Redirecting syslog to /dev/stdout

By default, Quay Enterprise saves logs most relevant for debugging to /var/log/syslog within the container. syslog-ng [https://en.wikipedia.org/wiki/Syslog-ng] can be configured to redirect these logs to /dev/stdout which will allow for collection by most logging solutions:

Create syslog-ng-extra.conf with the following content:

source s_docker_syslog { file("/var/log/syslog"); };
destination d_docker_syslog { file("/dev/stdout"); };
log {
    source(s_docker_syslog);
    destination(d_docker_syslog);

};






Single Container

Place the syslog-ng-extra.conf file into the configuration directory:

$ ls quay/config/
config.yaml   license       ssl.cert      ssl.key     syslog-ng-extra.conf





Restart the Quay Enterprise container:

$ docker ps
0f6c27088c32        quay.io/coreos/quay:v2.9.3 "/sbin/my_init"          27 hours ago        Up 3 hours          0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp, 8443/tcp   epic_banach

docker restart 0f6c27088c32








Kubernetes

base64 encode the syslog-ng-extra.conf file:

$ cat /config/syslog-ng-extra.conf | base64 -w 0

c291cmNlIHNfZG9ja2VyX3N5c2xvZyB7IGZpbGUoIi92YXIvbG9nL3N5c2xvZyIpOyB9Owpk
ZXN0aW5hdGlvbiBkX2RvY2tlcl9zeXNsb2cgeyBmaWxlKCIvZGV2L3N0ZG91dCIpOyB9Owpsb
2cgeyAKCXNvdXJjZShzX2RvY2tlcl9zeXNsb2cpOyAKCWRlc3RpbmF0aW9uKGRfZG9ja2VyX
3N5c2xvZyk7IAoKfTsK





Edit the Quay Enterprise config secret file:

$ kubectl --namespace quay-enterprise edit secret/quay-enterprise-config-secret





Add an entry for the syslog-ng-extra.conf file:

syslog-ng-extra.conf:
<-base64 encoded syslog-ng-extra.conf->





Delete quay-enterprise-app pods to trigger the quay-enterprise deployment to schedule pods with the updated configuration:

$ kubectl -n quay-enterprise get pods
NAME                                     READY     STATUS    RESTARTS   AGE
quay-enterprise-app-1576414776-vv4vv     1/1       Running   0          3h
quay-enterprise-app-1623234786-twrc2     1/1       Running   0          3h
quay-enterprise-redis-3163299701-mdw95   1/1       Running   0          3h





$ kubectl -n quay-enterprise delete pod/quay-enterprise-app-1576414776-vv4vv
$ kubectl -n quay-enterprise delete pod/quay-enterprise-app-1623234786-twrc2











          

      

      

    

  

  
    
    Using Helm Registry Plug-in with a self-signed certificate
    

    
 
  

    
      
          
            
  
Using Helm Registry Plug-in with a self-signed certificate

This document assumes you have deployed Quay Enterprise with a self-signed certificate.

Appr [https://github.com/app-registry/appr] uses the Python Requests library [http://docs.python-requests.org/en/master/], which trusts only a standard set of certificates by default. This prevents Helm from interacting with a Quay Enterprise instance that is using a self-signed certificate.

The error is reported as a connection error when attempting to interact with the registry:

$ helm registry version https://reg.example.com
Api-version: .. Connection error
Client-version: 0.3.7





To work around this restriction, add the CA for the self-signed certificate to the default list of trusted Certificate Authorities. This process is described for the following platforms:


	Container Linux [https://github.com/coreos/docs/blob/master/os/adding-certificate-authorities]


	Red Hat [https://access.redhat.com/solutions/1519813]


	Ubuntu/Debian [https://askubuntu.com/questions/73287/how-do-i-install-a-root-certificate]





Add an environment variable that points Python Requests to the correct certificate chain:

$ export REQUESTS_CA_BUNDLE=/etc/ssl/certs/ca-certificates.crt





This will allow Helm to connect to Quay Enterprise:

$ helm registry version reg.example.com   
Api-version: {u'cnr-api': u'0.2.7'}
Client-version: 0.3.7











          

      

      

    

  

  
    
    Direct OAuth approval
    

    
 
  

    
      
          
            
  
Direct OAuth approval

Note: Documentation on the API endpoints themselves can be found on the public API documentation for Quay [http://docs.quay.io/api/].

Quay Enterprise offers programmatic access via an OAuth 2 [http://oauth.net/2/] compatible API. Generation of an OAuth access token must normally be done via either an OAuth web approval flow, or via the Generate Token tab in the Application settings with Quay’s UI. Occasionally, however, a tool or external application might want to directly generate an access token on behalf of a user.


Enabling direct OAuth approval

Direct approval and generation of OAuth access tokens must be explicitly whitelisted by OAuth application client ID in the config. This is done as an additional security measure. The client ID for an OAuth application can be found under its information tab in the Quay UI.

To enable direct OAuth approval for a specific application, add its client ID to the DIRECT_OAUTH_CLIENTID_WHITELIST property in config.yaml:

DIRECT_OAUTH_CLIENTID_WHITELIST: ['some-client-id']








Using direct OAuth approval

To perform direct granting and approval of an OAuth token on behalf a user, an application or tool should issue an HTTP POST to the /oauth/authorizeapp endpoint, with the normal OAuth 2 approval flow parameters (client_id, redirect_uri, scope) as form encoded values.

In addition, the user’s credentials must be specified via a Basic Auth header. If the credentials validate, then Quay will redirect to the redirect_uri with the generated and approved token for that user.

Example (username is username and password is passwordhere):

Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmRoZXJl

POST https://myregistry/oauth/authorizeapp

client_id=some_client_id&redirect_uri=https://my/internal/application/token_created&scope=repo:push,org:admin





Response:

302 Found

Location: https://my/internal/application/token_created#access_token=some_access_token_here&token_type=Bearer&expires_in=315576000











          

      

      

    

  

  
    
    Georeplication of storage in Quay Enterprise
    

    
 
  

    
      
          
            
  
Georeplication of storage in Quay Enterprise

Georeplication allows for a single globally-distributed Quay Enterprise to serve container images from localized storage.

When georeplication is configured, container image pushes will be written to the preferred storage engine for that QE instance. After the initial push, image data will be replicated in the background to other storage engines. The list of replication locations is configurable. An image pull will always use the closest available storage engine, to maximize pull performance.


Prerequisites

Georeplication requires that there be a high availability storage engine (S3, GCS, RADOS, Swift) in each geographic region. Further, each region must be able to access every storage engine due to replication requirements.

NOTE: Local disk storage is not compatible with georeplication at this time.




Visit the Management Panel

Sign in to a super user account and visit http://yourregister/superuser to view the management panel:

[image: Quay Enterprise Management Panel]


Enable storage replication


	Click the configuration tab () and scroll down to the section entitled Registry Storage.


	Click “Enable Storage Replication”.


	Add each of the storage engines to which data will be replicated. All storages to be used must be listed.


	If complete replication of all images to all storage engines is required, under each storage engine configuration click “Replicate to storage engine by default”. This will ensure that all images are replicated to that storage engine. To instead enable per-namespace replication, please contact support.


	Click Save to validate.







Run Quay Enterprise with storage preferences


	Copy the config.yaml to all machines running Quay Enterprise


	For each machine in each region, add a QUAY_DISTRIBUTED_STORAGE_PREFERENCE environment variable with the preferred storage engine for the region in which the machine is running.

For example, for a machine running in Europe:

docker run -d -p 443:443 -p 80:80 -v /conf/stack:/conf/stack -e QUAY_DISTRIBUTED_STORAGE_PREFERENCE=europestorage quay.io/coreos/quay:versiontag





NOTE: The value of the environment variable specified must match the name of a Location ID as defined in the config panel



	Restart all Quay Enterprise containers










          

      

      

    

  

  
    
    Creating an OAuth application in GitHub
    

    
 
  

    
      
          
            
  
Creating an OAuth application in GitHub

You can authorize your registry to access a GitHub account and its repositories by registering it as a GitHub OAuth application.


Create new GitHub application


	Log into GitHub (Enterprise)


	Visit the Applications page under your organization’s settings.


	Click Register New Application [https://github.com/settings/applications/new]. The new OAuth application configuration screen is displayed:





Set Homepage URL


	Enter the Quay Enterprise URL as the Homepage URL




Note: If using public GitHub, the Homepage URL entered must be accessible by your users. It can still be an internal URL.




Set Authorization callback URL


	Enter https://{$QUAY ENTERPRISE URL}/oauth2/github/callback as the Authorization callback URL.


	Save your settings by clicking the Register application button. The new new application’s summary is shown:





	Record the Client ID and Client Secret shown for the new application.












          

      

      

    

  

  
    
    GitHub authentication
    

    
 
  

    
      
          
            
  
GitHub authentication

Quay Enterprise supports using GitHub or GitHub Enterprise as an authentication system.


Create an OAuth application in GitHub

Following the instructions at Create a GitHub Application.

NOTE: This application must be different from that used for GitHub Build Triggers.




Visit the management panel

Sign in to a super user account and visit http://yourregister/superuser to view the management panel:

[image: Quay Enterprise Management Panel]


Enable GitHub authentication

[image: Enable GitHub Authentication]
	Click the configuration tab () and scroll down to the section entitled GitHub (Enterprise) Authentication.


	Check the “Enable GitHub Authentication” box


	Fill in the credentials from the application created above


	Click “Save Configuration Changes”


	Restart the container (you will be prompted)










          

      

      

    

  

  
    
    Setup GitHub build triggers
    

    
 
  

    
      
          
            
  
Setup GitHub build triggers

Quay Enterprise supports using GitHub or GitHub Enterprise as a trigger to building
images.


Initial setup

If you have not yet done so, please enable build support in Quay Enterprise.




Create an OAuth application in GitHub

Following the instructions at Create a GitHub Application.

NOTE: This application must be different from that used for GitHub Authentication.




Visit the management panel

Sign in to a super user account and visit http://yourregister/superuser to view the management panel:

[image: Quay Enterprise Management Panel]


Enable GitHub triggers

[image: Enable GitHub Trigger]
	Click the configuration tab () and scroll down to the section entitled GitHub (Enterprise) Build Triggers.


	Check the “Enable GitHub Triggers” box


	Fill in the credentials from the application created above


	Click “Save Configuration Changes”


	Restart the container (you will be prompted)










          

      

      

    

  

  
    
    High Availability for Quay Enterprise
    

    
 
  

    
      
          
            
  
High Availability for Quay Enterprise

Quay Enterprise is designed to be run as a single global high availability service with minimal setup. This guide
explains the best practices for running Quay Enterprise in an HA setup.


Required Dependencies

The following services are required in order to run Quay Enterprise as HA:


	A decent sized Postgres or MySQL database with automatic backup and failover. Amazon RDS is an example of a service that has automatic backup and failover.


	A high availability distributed storage engine such as Amazon S3, Google Cloud Storage, Ceph RADOS or Swift. Using local storage with NFS is not recommended for HA setups.


	A Redis server running on a medium sized machine. Redis is not considered critical and therefore does not require failover or backup.


	A load balancer capable of TCP passthrough.


	At least three medium-sized machines for the cluster.







Basic setup

Perform the basic Quay Enterprise Setup process, using the above database, storage, redis and using the load balancer hostname as the server hostname. Once complete, save the contents of the conf/stack directory.




High Availability Setup

The ensure high availability, it is recommended that machines running in the cluster be self-initializing.

Each machine will need to be able to:


	Start from a predefined init script. coreos-cloudinit [https://github.com/coreos/coreos-cloudinit] can be used with Container Linux.


	Populate the conf/stack directory saved in the previous step


	Pull down the Quay Enterprise image via docker pull. It is highly recommended that you lock to a specific tagged version of Quay Enterprise


	Run the Quay Enterprise image, with the configuration directory mounted







Health checking instances

Once a cluster has been setup, the next step is to setup health checking to ensure that if a machine fails, it is automatically removed and replaced in the cluster.

Quay Enterprise exports a health checking endpoint at https://{yourloadbalancerhostname}/health/instance that will return a 200 HTTP status code if the machine is healthy.


Specialized RDS health checking

If the backing database is RDS, an additional healthcheck config can be specified to ensure that machines report as healthy even if RDS is current in failover mode.

HEALTH_CHECKER:
- RDSAwareHealthCheck
- access_key: access_key_here
  secret_key: secret_key_here
  region: us-east-1
  db_instance: quay-database










Health checking the cluster

To ensure the cluster as a whole is healthy, Quay Enterprise also exports a cluster-wide services status endpoint at https://{yourloadbalancerhostname}/health/endtoend that will return a 200 HTTP status code only if all services (database, redis, etc) are healthy.




Autoscaling

The final step in ensuring high availability for a Quay Enterprise cluster is ensuring it can scale to meet incoming demand. Scaling is typically accomplished by monitoring metrics such as CPU and memory, and adding (or removing) machines based on thresholds. On Amazon, CloudWatch alarms and Autoscaling Groups can be used to accomplish this task.







          

      

      

    

  

  
    
    On-premises installation
    

    
 
  

    
      
          
            
  
On-premises installation

Quay Enterprise requires three components to be running to begin the setup process:


	A supported database (MySQL, Postgres)


	A Redis instance (for real-time events)


	The Quay Enterprise image




NOTE: Please have the host and port of the database and the Redis instance ready.


Downloading your license

A valid license is required to run Quay Enterprise. Your license can be found on Tectonic Accounts [https://account.tectonic.com]. Please download or copy this license in Raw Format as a file named license.




Preparing the database

A MySQL RDBMS or Postgres installation with an empty database is required, and a login with full access to said database. The schema will be created the first time the registry image is run. The database install can either be pre-existing or run on Container Linux via a Docker container.




Setting up redis

Redis stores data which must be accessed quickly but doesn’t necessarily require durability guarantees. If you have an existing Redis instance, make sure to accept incoming connections on port 6379 (or change the port in the setup process) and then feel free to skip this step.

To run redis, simply pull and run the Quay.io Redis image:

sudo docker pull quay.io/quay/redis
sudo docker run -d -p 6379:6379 quay.io/quay/redis





NOTE: This host will have to accept incoming connections on port 6379 from the hosts on which the registry will run.




Downloading the Quay Enterprise image

After signing up you will be able to download a pull secret file named config.json.

The config.json file will look like this:

{
  "auths": {
    "quay.io": {
      "auth": "abcdefghijklmnopqrstuvwxyz...",
      "email": ""
    }
  }
}





config.json contains your credentials for the quay.io/coreos/quay repository. Save this file to your Container Linux machine in /home/core/.docker/config.json and /root/.docker/config.json. You should now be able to execute docker pull quay.io/coreos/quay:v2.9.3 to download the container.




Setting up the directories

Quay Enterprise requires a storage directory and a configuration directory:

mkdir storage
mkdir config








Setting up and running the registry

Run the following command, replacing /local/path/to/the/config/directory and /local/path/to/the/storage/directory with the absolute paths to the directories created above:

sudo docker run --restart=always -p 443:443 -p 80:80 --privileged=true -v /local/path/to/the/config/directory:/conf/stack -v /local/path/to/the/storage/directory:/datastorage -d quay.io/coreos/quay:v2.9.3





[image: Quay Enterprise Setup Screen]Once started, visit: http://yourhost/setup, wait for the page to load (it may take a minute or two) and follow instructions there to setup Quay Enterprise.

NOTE: Quay Enterprise will restart itself a few times during this setup process. If the container does not automatically come
back up, simply run the command above again.

[image: Quay Enterprise Restart]


Verifying the status of QE

Visit the /health/endtoend endpoint on the Quay Enterprise hostname and verify that the code is 200 and is_testing is false.




Logging in


If using database authentication:

Once Quay Enterprise is running, new users can be created by clicking the Sign Up button. If e-mail is enabled, the sign up process will require an e-mail confirmation step, after which repositories, organizations and teams can be setup by the user.




If using LDAP authentication:

Users should be able to login to the Quay Enterprise directly with their LDAP username and password.









          

      

      

    

  

  
    
    Adding TLS Certificates to the Quay Enterprise Container
    

    
 
  

    
      
          
            
  
Adding TLS Certificates to the Quay Enterprise Container

To add custom TLS certificates to Quay Enterprise, create a new directory named extra_ca_certs/ beneath the Quay Enterprise config directory. Copy any required site-specific TLS certificates to this new directory.


Example


View certificate to be added to the container:

$ cat storage.crt
-----BEGIN CERTIFICATE-----
MIIDTTCCAjWgAwIBAgIJAMVr9ngjJhzbMA0GCSqGSIb3DQEBCwUAMD0xCzAJBgNV
[...]
-----END CERTIFICATE-----








Create certs directory and copy certificate there:

$ mkdir -p quay/config/extra_ca_certs

$ cp storage.crt quay/config/extra_ca_certs/

$ tree quay/config/
├── config.yaml
├── extra_ca_certs
│   ├── storage.crt








Restart QE container and check cert with docker-exec:

Obtain the quay container’s CONTAINER ID with docker ps:

$ docker ps
CONTAINER ID        IMAGE                                COMMAND                  CREATED             STATUS              PORTS
5a3e82c4a75f        quay.io/coreos/quay:v2.9.3           "/sbin/my_init"          24 hours ago        Up 18 hours         0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp, 8443/tcp   grave_keller





Restart the container with that ID:

$ docker restart 5a3e82c4a75f





Examine the certificate copied into the container namespace:

$ docker exec -it 5a3e82c4a75f cat /etc/ssl/certs/storage.pem
-----BEGIN CERTIFICATE-----
MIIDTTCCAjWgAwIBAgIJAMVr9ngjJhzbMA0GCSqGSIb3DQEBCwUAMD0xCzAJBgNV










Add certs when deployed on Kubernetes

When deployed on Kubernetes, QE mounts in a secret as a volume to store config assets. Unfortunately, this currently breaks the upload certificate function of the superuser panel.

To get around this error, a base64 encoded certificate can be added to the secret after Quay Enterprise has been deployed.

Begin by base64 encoding the contents of the certificate:

$ cat ca.crt
-----BEGIN CERTIFICATE-----
MIIDljCCAn6gAwIBAgIBATANBgkqhkiG9w0BAQsFADA5MRcwFQYDVQQKDA5MQUIu
TElCQ09SRS5TTzEeMBwGA1UEAwwVQ2VydGlmaWNhdGUgQXV0aG9yaXR5MB4XDTE2
MDExMjA2NTkxMFoXDTM2MDExMjA2NTkxMFowOTEXMBUGA1UECgwOTEFCLkxJQkNP
UkUuU08xHjAcBgNVBAMMFUNlcnRpZmljYXRlIEF1dGhvcml0eTCCASIwDQYJKoZI
[...]
-----END CERTIFICATE-----

$ cat ca.crt | base64 -w 0
[...]
c1psWGpqeGlPQmNEWkJPMjJ5d0pDemVnR2QNCnRsbW9JdEF4YnFSdVd3PT0KLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=





Use the kubectl tool to edit the quay-enterprise-config-secret.

$ kubectl --namespace quay-enterprise edit secret/quay-enterprise-config-secret





Add an entry for the cert and paste the full base64 encoded string under the entry:

  custom-cert.crt:
c1psWGpqeGlPQmNEWkJPMjJ5d0pDemVnR2QNCnRsbW9JdEF4YnFSdVd3PT0KLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=





Finally, recycle all QE pods. Use kubectl delete to remove all QE pods. The QE Deployment will automatically schedule replacement pods with the new certificate data.







          

      

      

    

  

  
    
    LDAP Authentication Setup for Quay Enterprise
    

    
 
  

    
      
          
            
  
LDAP Authentication Setup for Quay Enterprise

The Lightweight Directory Access Protocol (LDAP) is an open, vendor-neutral, industry standard application protocol for accessing and maintaining distributed directory information services over an Internet Protocol (IP) network. Quay Enterprise supports using LDAP as an identity provider.


Before you start

The Quay Enterprise LDAP setup workflow requires that the user configuring the LDAP Setup to exist in LDAP directory. Before attempting the setup, make sure that you are logged in as a superuser that matches user crendentials in LDAP. In order to do so, Navigate to the SuperUser panel (ex: http(s)://quay.enterprise/superuser) and click on “Create User” button to create a new User. Make sure to create a user that matches username/email syntax in LDAP.

Once the user is created, click on the Settings icon next to the user and choose “Make Superuser” option. For ease of troubleshooting, set the User password to LDAP password.

[image: Enable GitHub Authentication] You will be prompted to restart the container once the new user is created. Restart Quay Enterprise container and log in to the Superuser panel as the user that was just created.




Setup LDAP Configuration

[image: Enable GitHub Authentication]Navigate to the Superuser panel and navigate to settings section. Locate the Authentication section and select “LDAP” from the drop-down menu.

Enter LDAP configuration fields as required.

[image: Enable GitHub Authentication]
Few tips for LDAP configuration:


	LDAP URI must be in ldap:// or ldaps:// syntax. Typing a URI with ldaps:// prefix will surface the option to provide custom SSL certificate for TLS setup


	User Relative DN is relative to BaseDN (ex: ou=NYC not ou=NYC,dc=example,dc=org)


	Logged in Username must exist in User Relative DN


	You can enter multiple “Secondary User Relative DNs” if there are multiple Organizational Units where User objects are located at. (ex: ou=Users,ou=NYC and ou=Users,ou=SFO). Simply type in the Organizational Units and click on Add button to add multiple RDNs


	sAMAccountName is the UID attribute for against Microsoft Active Directory setups


	Quay Enterprise searches “User Relative DN” with subtree scope. For example, if your Organization has Organizational Units NYC and SFO under the Users OU (ou=SFO,ou=Users and ou=NYC,ou=Users), Quay Enterprise can authenticate users from both the NYC and SFO Organizational Units if the User Relative DN is set to Users (ou=Users)




Once the configuration is completed, click on “Save Configuration Changes” button. You will be prompted to login with LDAP credentials.

[image: Enable GitHub Authentication]




Common Issues

Invalid credentials

Administrator DN or Administrator DN Password values are incorrect

Verification of superuser %USERNAME% failed: Username not found The user either does not exist in the remote authentication system OR LDAP auth is misconfigured.

Quay can connect to the LDAP server via Username/Password specified in the Administrator DN fields however cannot find the current logged in user with the UID Attribute or Mail Attribute fields in the User Relative DN Path. Either current logged in user does not exist in User Relative DN Path, or Administrator DN user do not have rights to search/read this LDAP path.







          

      

      

    

  

  
    
    Quay Enterprise log debugging
    

    
 
  

    
      
          
            
  
Quay Enterprise log debugging


Personal debugging

When attempting to debug an issue, one should first consult the logs of the web workers running the Quay Enterprise instance.




Visit the management panel

Sign in to a super user account and visit http://yourregister/superuser to view the management panel:

[image: Quay Enterprise Management Panel]


View the logs for each service


	Click the logs tab ()


	To view logs for each service, click the service name at the top. The logs will update automatically.







Contacting support

When contacting support, one should always include a copy of Quay Enterprise’s log directory.

To download logs, click the “ Download All Local Logs (.tar.gz)” link




Shell script to download logs

The aforementioned operations are also available in script form on GitHub [https://github.com/coreos/docs/blob/master/quay-enterprise/gzip-registry-logs.sh].







          

      

      

    

  

  
    
    Setting up a MySQL Docker container
    

    
 
  

    
      
          
            
  
Setting up a MySQL Docker container

If you don’t have an existing MySQL system to host the Quay Enterprise database on then you can run the steps below to create a dedicated MySQL container using the Oracle MySQL verified Docker image from https://registry.hub.docker.com/_/mysql/.

docker pull mysql:5.7





Edit these values to your liking:

MYSQL_USER="coreosuser"
MYSQL_DATABASE="enterpriseregistrydb"
MYSQL_CONTAINER_NAME="mysql"





Do not edit these values:
(creates a 32 char password for the MySQL root user and the Quay Enterprise DB user)

MYSQL_ROOT_PASSWORD=$(cat /dev/urandom | tr -dc 'a-zA-Z0-9' | fold -w 32 | sed 1q)
MYSQL_PASSWORD=$(cat /dev/urandom | tr -dc 'a-zA-Z0-9' | fold -w 32 | sed 1q)





Start the MySQL container and create a new DB for Quay Enterprise:

docker \
  run \
  --detach \
  --env MYSQL_ROOT_PASSWORD=${MYSQL_ROOT_PASSWORD} \
  --env MYSQL_USER=${MYSQL_USER} \
  --env MYSQL_PASSWORD=${MYSQL_PASSWORD} \
  --env MYSQL_DATABASE=${MYSQL_DATABASE} \
  --name ${MYSQL_CONTAINER_NAME} \
  --publish 3306:3306 \
  mysql:5.7;





Wait about 30 seconds for the new DB to be created before testing the connection to the DB, the MySQL container will not respond during the initial DB creation process.

Alternatively you can download a simple shell script to perform the steps above:

curl --location https://raw.githubusercontent.com/coreos/docs/master/quay-enterprise/provision_mysql.sh -o /tmp/provision_mysql.sh -#





Then run:

chmod -c +x /tmp/provision_mysql.sh
/tmp/provision_mysql.sh





Note: Using Percona v5.6 for the MySQL container is known to not work at this point in time.





          

      

      

    

  

  
    
    Installing Contributor Extensions for Postgres
    

    
 
  

    
      
          
            
  
Installing Contributor Extensions for Postgres

As of release 2.1.0, Quay Enterprise requires the pg_trgm [https://www.postgresql.org/docs/current/static/pgtrgm.html] extension when using PostgreSQL. This extension is part of the Additional Supplied Modules [https://www.postgresql.org/docs/current/static/contrib.html]. These modules can be installed with standard package management tools on Debian and RedHat-based systems.


Debian/Ubuntu

# apt-get update
# apt-get install postgresql-contrib








Redhat/CentOS

# yum install postgresql-contrib








Fedora

# dnf install postgresql-contrib








Docker

The library/postgres [https://hub.docker.com/_/postgres/] container includes the postgresql-contrib package.

If using a container based on one of the above operating systems, modify the container’s Dockerfile to install the postgresql-contrib package. Containers built FROM other operating systems may need to install the additional modules from source [https://www.postgresql.org/docs/current/static/contrib.html].




PostgreSQL on Amazon RDS

The postgresql-contrib package is included.







          

      

      

    

  

  
    
    Prometheus metrics under Quay Enterprise
    

    
 
  

    
      
          
            
  
Prometheus metrics under Quay Enterprise

Quay Enterprise exports a Prometheus [https://prometheus.io/]-compatible endpoint on each instance to allow for easy monitoring and alerting.


Exposing the prometheus endpoint

The Prometheus-compatible endpoint on the Quay Enterprise instance can be found at port 9092. Simply add -p 9092:9092 to the docker run command (or expose the port via the Pod configuration in Kubernetes).




Setting up Prometheus to consume metrics

Prometheus needs a way to access all Quay Enterprise instances running in a cluster. In the typical setup, this is done by listing all the Quay Enterprise instances in a single named DNS entry, which is then given to Prometheus.


DNS configuration under Kubernetes

A simple Kubernetes service [http://kubernetes.io/docs/user-guide/services/] can be configured to provide the DNS entry for Prometheus. Details on running Prometheus under Kubernetes can be found at Prometheus and Kubernetes [https://coreos.com/blog/prometheus-and-kubernetes-up-and-running.html] and Monitoring Kubernetes with Prometheus [https://coreos.com/blog/monitoring-kubernetes-with-prometheus.html].




DNS configuration for a manual cluster

SkyDNS [https://github.com/skynetservices/skydns] is a simple solution for managing this DNS record when not using Kubernetes. SkyDNS can run atop an etcd [https://github.com/coreos/etcd] cluster. Entries for each Quay Enterprise instance in the cluster can be added and removed in the etcd store. SkyDNS will regularly read them from there and update the list of Quay instances in the DNS record accordingly.









          

      

      

    

  

  
    
    Upgrade to Quay Enterprise 2.0.0
    

    
 
  

    
      
          
            
  
Upgrade to Quay Enterprise 2.0.0

All Quay Enterprise instances being upgraded from versions < 2.0.0 must upgrade to Quay Enterprise 2.0.0 first before continuing to upgrade. This upgrade has an extra step, documented here.

We highly recommend performing this upgrade during a scheduled maintainence window, as it will require taking the existing cluster down temporarily.


Download Quay Enterprise License

To begin, download your Quay Enterprise License from your Tectonic Account [https://account.tectonic.com]. Please download or copy this license in Raw Format as a file named license:

[image: Quay Enterprise License Raw Format]


Shutdown all Quay Enterprise instances

Shutdown all running instances of Quay Enterprise, across all clusters.




Run a single instance of Quay Enterprise 2

Run a single instance of Quay Enterprise 2.0.0 by replacing quay.io/coreos/registry:{currentVersion} with quay.io/coreos/quay:v2.0.0 in your run command, startup script, config or systemd unit.




Add your license to the Quay Enterprise


Quay Enterprise setup as a container or under Kubernetes


	Visit the management panel:




Sign in to a super user account and visit http://yourregister/superuser to view the management panel:

[image: Quay Enterprise Management Panel]
	Click the configuration tab ()


	In the section entitled “License”, paste in the contents of the license downloaded above


	Click “Save Configuration Changes”


	Restart the container (you will be prompted)







Add license via the filesystem

Ensure QE instance has been shutdown and add the raw format license in license file to the directory mapped to conf/stack, next to the existing config.yaml.


Example:

conf/stack is mapped to quay2/config in docker run command used to bring up Quay Enterprise:

docker run --restart=always -p 443:443 -p 80:80 --privileged=true -v /quay2/config:/conf/stack -v /quay2/storage:/datastorage -d quay.io/coreos/quay:v2.0.0





license file resides in the quay2/config directory:

$ ls quay2/config/
config.yaml  license

$ cat quay2/license
eyJhbGciOiJSUzI1NiJ9.eyJzY2hlbWFWZXJzaW9uIjoidjIiLCJ2ZXJzaW9uIjoiMSIsImNyZWF0aW9uRGF0ZSI6IjIwMTYtMTAtMjZUMTc6MjM6MjJaIiwiZXhwaXJ
[...]












Update cluster

Update all remaining Quay Enterprise instances to refer to the new image (quay.io/coreos/quay:v2.0.0).




Verify cluster

Verify that your cluster and its license are valid by performing a push or pull. If you receive an HTTP 402, please make sure your license is properly installed and valid by checking in the management panel (see above for instructions).

If you encounter unusual problems, please contact support.







          

      

      

    

  

  
    
    Working with GitHub
    

    
 
  

    
      
          
            
  
Working with GitHub

Use these guides to:


	Authenticate users with GitHub


	Use GitHub to trigger builds


	Use Git triggers and submodules [http://docs.quay.io/guides/git-submodules.html]


	Create GitHub read-only build triggers [http://docs.quay.io/guides/github-read-only.html]


	Use OAuth to access GitHub








          

      

      

    

  

  
    
    Using SSL to protect connections to Quay Enterprise
    

    
 
  

    
      
          
            
  
Using SSL to protect connections to Quay Enterprise

This document assumes you have deployed Quay Enterprise as a single container.

Quay Enterprise will be configured with a self-signed certificate [https://en.wikipedia.org/wiki/Self-signed_certificate]. A Certificate Authority (CA) is required.


Create a CA and sign a certificate

First, create a root CA:

$ openssl genrsa -out rootCA.key 2048
$ openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out rootCA.pem





Next, create an openssl.cnf file. Replacing DNS.1 and IP.1 with the hostname and IP of the Quay Enterprise server:

openssl.cnf

[req]
req_extensions = v3_req
distinguished_name = req_distinguished_name
[req_distinguished_name]
[ v3_req ]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names
[alt_names]
DNS.1 = reg.example.com
IP.1 = 12.345.678.9





The following set of shell commands invoke the openssl utility to create a key for Quay Enterprise, generate a request for an Authority to sign a new certificate, and finally generate a certificate for Quay Enterprise, signed by the CA created earlier.

Make sure the CA certificate file rootCA.pem and the openssl.cnf config file are both available.

$ openssl genrsa -out ssl.key 2048
$ openssl req -new -key ssl.key -out ssl.csr -subj "/CN=quay-enterprise" -config openssl.cnf
$ openssl x509 -req -in ssl.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out ssl.cert -days 356 -extensions v3_req -extfile openssl.cnf








Configuring Quay Enterprise to use the new certificate

The next step can be accomplished either in the QE superuser panel, or from the terminal.


To configure with the superuser GUI in QE

Set the Server Hostname to the appropriate value and check the Enable SSL then upload the ssl.key and ssl.cert files:

[image: Upload Certificate]Save the configuration. QE will automatically validate the SSL certificate.

[image: Save and Check config]Restart the container:

[image: Restart Container]


To configure with the command line

By not using the web interface the configuration checking mechanism built into QE is unavailable. It is suggested to use the web interface if possible.

Copy the ssl.key and ssl.cert into the specified config directory.

Note: The certificate/key files must be named ssl.key and ssl.cert

$ ls
ssl.cert  ssl.key
$ scp ssl.* core@10.7.8.117:/home/core/config/

core@lan-lab-7 ~ $ ls config/
config.yaml  ssl.cert  ssl.key





Modify the PREFERRED_URL_SCHEME: parameter in config.yaml from http to https

PREFERRED_URL_SCHEME: https





Restart the QE container:

$ docker ps
CONTAINER ID        IMAGE                     COMMAND                  CREATED             STATUS              PORTS                                                NAMES
eaf45a4aa12d        quay.io/quay/redis        "/usr/bin/redis-serve"   22 hours ago        Up 22 hours         0.0.0.0:6379->6379/tcp                               dreamy_ramanujan
cbe7b0fa39d8        quay.io/coreos/quay   "/sbin/my_init"          22 hours ago        Up About an hour    0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp, 8443/tcp   fervent_ptolemy
705fe7311940        mysql:5.7                 "/entrypoint.sh mysql"   23 hours ago        Up 22 hours         0.0.0.0:3306->3306/tcp                               mysql

$ docker restart cbe7b0fa39d8








Test the secure connection

Confirm the configuration by visiting the URL from a browser https://reg.example.com/

[image: Browser]“Your Connection is not secure” means the CA is untrusted but confirms that SSL is functioning properly. Check Google for how to configure your operating system and web browser to trust your new CA.






Configuring Docker to Trust a Certificate Authority

Docker requires that custom certs be installed to /etc/docker/certs.d/ under a directory with the same name as the hostname private registry. It is also required for the cert to be called ca.crt

Copying the rootCA file.

$ cp tmp/rootCA.pem /etc/docker/certs.d/reg.example.com/ca.crt`





After this step is completed docker login should authenticate successfully and pushing to the repository should succeed.

$ sudo docker push reg.example.com/kbrwn/hello
The push refers to a repository [reg.example.com/kbrwn/hello]
5f70bf18a086: Layer already exists
e493e9cb9dac: Pushed
1770dbc4af14: Pushed
a7bb4eb71da7: Pushed
9fad7adcbd46: Pushed
2cec07a74a9f: Pushed
f342e0a3e445: Pushed
b12f995330bb: Pushed
2016366cdd69: Pushed
a930437ab3a5: Pushed
15eb0f73cd14: Pushed
latest: digest: sha256:c24be6d92b0a4e2bb8a8cc7c9bd044278d6abdf31534729b1660a485b1cd315c size: 7864











          

      

      

    

  

  
    
    Quay Enterprise OIDC Auth with Tectonic Identity
    

    
 
  

    
      
          
            
  
Quay Enterprise OIDC Auth with Tectonic Identity

This document explains how to configure Quay Enterprise to use Tectonic Identity as an OIDC provider for authorization and authentication.


Export certificate information for TLS verification of Tectonic Identity

kubectl -n tectonic-system get secret tectonic-ca-cert-secret -o json | jq -r '.data[]' | base64 -d >> tectonic-ca-ingress.crt
kubectl -n tectonic-system get secret tectonic-ingress-tls-secret -o json | jq -r '.data["tls.crt"]' | base64 -d >> tectonic-ca-ingress.crt








Upload certificate to Quay Enterprise

Upload the tectonic-ca-ingress.crt certificate to to Quay Enterprise through the superuser panel, or follow Adding TLS Certificates to the Quay Enterprise Container to upload manually.




Configure Tectonic Identity

Edit the Tectonic Identity ConfigMap:

kubectl -n tectonic-system edit cm tectonic-identity





Add a client definition under the staticClients section for Quay Enterprise:

  - id: quay-enterprise
    name: Quay Enterprise
    secret: rEpLaCeThIs
    redirectURIs:
      - 'https://reg.example.com/oauth2/tectonicidentity/callback'
      - 'https://reg.example.com/oauth2/tectonicidentity/callback/attach'
      - 'https://reg.example.com/oauth2/tectonicidentity/callback/cli'





secret: a user generated string that will later be passed to Quay Enterprise. Use date | md5sum or openssl rand -base64 15 to generate a random string.

redirectURIs: callback URLs that must be passed to the Tectonic Identity ConfigMap. Replace reg.example.com with the Server Hostname of the registry. These values can be copied from the superuser panel if the OIDC provider is added to Quay Enterprise before this ConfigMap change is saved.

Save the changes to the Tectonic Identity ConfigMap and issue a kubectl patch to update the deployment:

kubectl --namespace tectonic-system patch deployment tectonic-identity \
    --patch "{\"spec\":{\"template\":{\"metadata\":{\"annotations\":{\"date\":\"`date +'%s'`\"}}}}}"








OIDC Provider for Tectonic Identity

Navigate to the superuser panel, then to External Authorization, click “Add OIDC Provider” and type tectonicidentity in the prompt.

OIDC Server: FQDN of the Tectonic cluster with /identity/ appended. Most easily found in the tectonic-identity configmap as the issuer parameter. Be certain to include the forward slash at the end of the domain name. Example: https://tectonic.example.com/identity/

Client ID: quay-enterprise

Client Secret: string passed as secret to tectonic-identity configmap.

Service Name: will be displayed on the login page. Suggested value: Tectonic Identity




Configure Access Settings

Enable Open User Creation must be checked to allow for new users to be created.

Enable Invite-only User Creation used to restrict access based on email invitations to organization teams. This requires an SMTP server.

Allow external application tokens  if checked, users will be able to generate external application tokens for use with the docker and rkt CLIs. Consider the means of internal authentication before selecting this option.




Configure Internal Authentication

Local Database can be used if traditional username/password authentication with the docker CLI is desired. This will require that OIDC users create a password from Account Settings after initial sign up.

External Application Token requires enabling Allow external application tokens in Access Settings. This option will disable username/password in favor of a token generated from Account Settings. This option provides a single sign on experience, and minimizes password complication. If enabled, set an expiration date for the token.




Save Configuration

Click “Save Configuration Changes”, then “Save Configuration”, and finally “Restart Now” or restart the Quay Enterprise container with a docker restart or kubectl delete pod <quay-enterprise-pod-name>.







          

      

      

    

  

  
    
    Chihaya Setup
    

    
 
  

    
      
          
            
  
Chihaya Setup

The Chihaya project is an open source BitTorrent tracker that supports JWT-based authorization. It is the preferred tracker for making use of the secure BitTorrent-based distribution feature in Quay Enterprise.


Initial Setup


Basic configuration

Copy the following file as chihaya.yaml, replacing {QE LOCATION} and {TRACKER LOCATION} with
the reachable endpoint for the Quay Enterprise instance and the tracker itself, respectively.

chihaya:
  announce_interval: 15m
  prometheus_addr: 0.0.0.0:6880

  http:
    addr: 0.0.0.0:6881
    allow_ip_spoofing: true
    real_ip_header: X-Forwarded-For
    read_timeout: 5s
    write_timeout: 5s
    request_timeout: 5s

  storage:
    gc_interval: 14m
    peer_lifetime: 15m
    shards: 16
    max_numwant: 50

  prehooks:
  - name: jwt
    config:
      issuer: '{QE LOCATION}'
      audience: '{TRACKER LOCATION}/announce'
      jwk_set_url: '{QE LOCATION}/keys/services/quay/keys'
      jwk_set_update_interval: 5m










Running

Run the following commands to start Chihaya under a Docker container with the specified configuration mounted, making sure to point the chihaya.yaml to the file created above.

$ docker pull quay.io/jzelinskie/chihaya:v2.0.0-rc.1
$ docker run -p 6880-6882:6880-6882 -v $PWD/chihaya.yaml:/etc/chihaya.yaml:ro quay.io/jzelinskie/chihaya:v2.0.0-rc.1








Security

It is recommended to place the tracker behind an SSL-terminating proxy or load balancer of some kind, especially if publicly facing. If setup this way, make sure to update the jwtAudience value in the configuration to have https as its prefix, and to refer to the load balancer.




High Availability

High Availability of the tracker can be handled by running 2 or more instances of the tracker, with one setup as primary and another as secondary, configured with automatic failover. A simple HTTP check can be used to ensure the health of each instance.







          

      

      

    

  

  
    
    <no title>
    

    
 
  

    
      
          
            
  Schema for Quay Enterprise

Note: all fields are optional unless otherwise marked


	AUTHENTICATION_TYPE [string] required: The authentication engine to use for credential authentication.


	enum: Database, LDAP, JWT, Keystone, OIDC.


	Example: Database






	BUILDLOGS_REDIS [object] required: Connection information for Redis for build logs caching.


	HOST [string] required: The hostname at which Redis is accessible.


	Example: my.redis.cluster






	PASSWORD [string]: The password to connect to the Redis instance.


	Example: mypassword






	PORT [number]: The port at which Redis is accessible.


	Example: 1234










	DB_URI [string] required: The URI at which to access the database, including any credentials.


	Reference: https://www.postgresql.org/docs/9.3/static/libpq-connect.html#AEN39495


	Example: mysql+pymysql://username:password@dns.of.database/quay






	DEFAULT_TAG_EXPIRATION [string] required: The default, configurable tag expiration time for time machine. Defaults to 2w.


	Pattern: ^[0-9]+(w|m|d|h|s)$






	DISTRIBUTED_STORAGE_CONFIG [object] required: Configuration for storage engine(s) to use in Quay. Each key is a unique ID for a storage engine, with the value being a tuple of the type and configuration for that engine.


	Example: {"local_storage": ["LocalStorage", {"storage_path": "some/path/"}]}






	DISTRIBUTED_STORAGE_PREFERENCE [array] required: The preferred storage engine(s) (by ID in DISTRIBUTED_STORAGE_CONFIG) to use. A preferred engine means it is first checked for pullig and images are pushed to it.  * Min Items: None * Example: [u's3_us_east', u's3_us_west'] * array item [string] * preferred_url_scheme [string] required:  The URL scheme to use when hitting Quay. If Quay is behind SSL at all, this must be https.  * enum: http, https * Example: https


	SERVER_HOSTNAME [string] required: The URL at which Quay is accessible, without the scheme.


	Example: quay.io






	TAG_EXPIRATION_OPTIONS [array] required: The options that users can select for expiration of tags in their namespace(if enabled).


	Min Items: None


	array item [string]


	Pattern: ^[0-9]+(w|m|d|h|s)$






	USER_EVENTS_REDIS [object] required: Connection information for Redis for user event handling.


	HOST [string] required: The hostname at which Redis is accessible


	Example: my.redis.cluster






	PASSWORD [string]: The password to connect to the Redis instance.


	Example: mypassword






	PORT [number]: The port at which Redis is accessible.


	Example: 1234










	ACTION_LOG_ARCHIVE_LOCATION [string]: If action log archiving is enabled, the storage engine in which to place the archived data.


	Example: s3_us_east






	**ACTION_LOG_ARCHIVE_PATH’ [string]: If action log archiving is enabled, the path in storage in which to place the archived data.


	Example: archives/actionlogs






	APP_SPECIFIC_TOKEN_EXPIRATION [string, null]: The expiration for external app tokens. Defaults to None.


	Pattern: ^[0-9]+(w|m|d|h|s)$






	ALLOW_PULLS_WITHOUT_STRICT_LOGGING [boolean]: If true, pulls in which the pull audit log entry cannot be written will still succeed. Useful if the database can fallback into a read-only state and it is desired for pulls to continue during that time. Defaults to False.


	Example: True






	AVATAR_KIND [string]: The types of avatars to display, either generated inline (local) or Gravatar (gravatar)


	enum: local, gravatar






	BITBUCKET_TRIGGER_CONFIG [‘object’, ‘null’]: Configuration for using BitBucket for build triggers.


	Reference: https://coreos.com/quay-enterprise/docs/latest/bitbucket-build.html


	consumer_key [string] required: The registered consumer key(client ID) for this Quay instance.


	Example: 0e8dbe15c4c7630b6780






	CONSUMER_SECRET [string] required: The registered consumer secret(client secret) for this Quay instance


	Example: e4a58ddd3d7408b7aec109e85564a0d153d3e846










	BITTORRENT_ANNOUNCE_URL [string]: The URL of the announce endpoint on the bittorrent tracker.


	Pattern: ^http(s)?://(.)+$


	Example: https://localhost:6881/announce






	BITTORRENT_PIECE_SIZE [number]: The bittorent piece size to use. If not specified, defaults to 512 * 1024.


	Example: 524288






	BROWSER_API_CALLS_XHR_ONLY [boolean]:  If enabled, only API calls marked as being made by an XHR will be allowed from browsers. Defaults to True.


	**Example: False






	CONTACT_INFO [array]: If specified, contact information to display on the contact page. If only a single piece of contact information is specified, the contact footer will link directly.


	Min Items: 1


	Unique Items: True


	array item 0 [string]: Adds a link to send an e-mail


	Pattern: ^mailto:(.)+$


	Example: mailto:support@quay.io






	array item 1 [string]: Adds a link to visit an IRC chat room


	Pattern: ^irc://(.)+$


	Example: irc://chat.freenode.net:6665/quay






	array item 2 [string]: Adds a link to call a phone number


	Pattern: ^tel:(.)+$


	Example: tel:+1-888-930-3475






	array item 3 [string]: Adds a link to a defined URL


	Pattern: ^http(s)?://(.)+$


	Example: https://twitter.com/quayio














	BLACKLIST_V2_SPEC [string]: The Docker CLI versions to which Quay will respond that V2 is unsupported. Defaults to <1.6.0.


	Reference: http://pythonhosted.org/semantic_version/reference.html#semantic_version.Spec


	Example: <1.8.0






	DB_CONNECTION_ARGS [object]: If specified, connection arguments for the database such as timeouts and SSL.


	threadlocals [boolean] required: Whether to use thread-local connections. Should ALWAYS be true


	autorollback [boolean] required: Whether to use auto-rollback connections. Should ALWAYS be true


	ssl [object]: SSL connection configuration


	ca [string] required: Absolute container path to the CA certificate to use for SSL connections.













	* **Example**: `conf/stack/ssl-ca-cert.pem`










	DEFAULT_NAMESPACE_MAXIMUM_BUILD_COUNT [number, null]: If not None, the default maximum number of builds that can be queued in a namespace.


	**Example: 20






	DIRECT_OAUTH_CLIENTID_WHITELIST [array]: A list of client IDs of Quay-managed applications that are allowed to perform direct OAuth approval without user approval.


	Min Items: None


	Unique Items: True


	Reference: https://coreos.com/quay-enterprise/docs/latest/direct-oauth.html


	array item [string]










	DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS [array]: The list of storage engine(s) (by ID in DISTRIBUTED_STORAGE_CONFIG) whose images should be fully replicated, by default, to all other storage engines.


	Min Items: None


	Example: s3_us_east, s3_us_west


	array item [string]










	EXTERNAL_TLS_TERMINATION [boolean]: If TLS is supported, but terminated at a layer before Quay, must be true.


	Example: True






	ENABLE_HEALTH_DEBUG_SECRET [string, null]: If specified, a secret that can be given to health endpoints to see full debug info when not authenticated as a superuser.


	Example: somesecrethere






	EXPIRED_APP_SPECIFIC_TOKEN_GC [string, null]: Duration of time expired external app tokens will remain before being garbage collected. Defaults to 1d.


	pattern: ^[0-9]+(w|m|d|h|s)$






	FEATURE_ACI_CONVERSION [boolean]: Whether to enable conversion to ACIs. Defaults to False.


	Example: False






	FEATURE_ACTION_LOG_ROTATION [boolean]: Whether or not to rotate old action logs to storage. Defaults to False.


	Example: False






	FEATURE_ADVERTISE_V2 [boolean]: Whether the v2/ endpoint is visible. Defaults to True.


	Example: True






	FEATURE_ANONYMOUS_ACCESS [boolean]: Whether to allow anonymous users to browse and pull public repositories.Defaults to True.


	Example: True






	FEATURE_APP_REGISTRY [boolean]: Whether to enable support for App repositories. Defaults to False.


	Example: False






	FEATURE_APP_SPECIFIC_TOKENS [boolean]:  +      ‘description’: ‘If enabled, users can create tokens for use by the Docker CLI. Defaults to True.


	Example: False






	FEATURE_BITBUCKET_BUILD [boolean]: Whether to support Bitbucket build triggers. Defaults to False.


	Example: False






	FEATURE_BITTORRENT [boolean]: Whether to allow using Bittorrent-based pulls. Defaults to False.


	Reference: https://coreos.com/quay-enterprise/docs/latest/bittorrent.html


	Example: False






	FEATURE_BUILD_SUPPORT [boolean]: Whether to support Dockerfile build. Defaults to True.


	Example: True






	FEATURE_CHANGE_TAG_EXPIRARTION [boolean]: Whether users and organizations are allowed to change the tag expiration for tags in their namespace. Defaults to True.


	Example: False






	FEATURE_DIRECT_LOGIN [boolean]: Whether users can directly login to the UI. Defaults to True.


	Example: True






	FEATURE_GITHUB_BUILD [boolean]: Whether to support GitHub build triggers. Defaults to False.


	Example: False






	FEATURE_GITHUB_LOGIN [boolean]: Whether GitHub login is supported. Defaults to False.


	Example: False






	FEATURE_GITLAB_BUILD[boolean]: Whether to support GitLab build triggers. Defaults to False.


	Example: False






	FEATURE_GOOGLE_LOGIN [boolean]: Whether Google login is supported. Defaults to False.


	Example: False






	FEATURE_INVITE_ONLY_USER_CREATION [boolean]: Whether users being created must be invited by another user. Defaults to False.


	Example: False






	FEATURE_LIBRARY_SUPPORT [boolean]: Whether to allow for “namespace-less” repositories when pulling and pushing from Docker. Defaults to True.


	Example: True






	FEATURE_MAILING [boolean]: Whether emails are enabled. Defaults to True.


	Example: True






	FEATURE_NONSUPERUSER_TEAM_SYNCING_SETUP [boolean]: If enabled, non-superusers can setup syncing on teams to backing LDAP or Keystone. Defaults To False.


	Example: True






	FEATURE_PARTIAL_USER_AUTOCOMPLETE [boolean]: If set to true, autocompletion will apply to partial usernames. Defaults to True.


	Example: True






	FEATURE_PERMANENT_SESSIONS [boolean]: Whether sessions are permanent. Defaults to True.


	Example: True






	FEATURE_PROXY_STORAGE [boolean]: Whether to proxy all direct download URLs in storage via the registry nginx. Defaults to False.


	Example: False






	FEATURE_PUBLIC_CATALOG [boolean]: If set to true, the _catalog endpoint returns public repositories. Otherwise, only private repositories can be returned. Defaults to False.


	Example: False






	FEATURE_READER_BUILD_LOGS [boolean]: If set to true, build logs may be read by those with read access to the repo, rather than only write access or admin access. Defaults to False.


	Example: False






	FEATURE_RECAPTCHA [boolean]: Whether Recaptcha is necessary for user login and recovery. Defaults to False.


	Example: False


	Reference: https://www.google.com/recaptcha/intro/






	FEATURE_REQUIRE_ENCRYPTED_BASIC_AUTH [boolean]: Whether non-encrypted passwords (as opposed to encrypted tokens) can be used for basic auth. Defaults to False.


	Example: False






	FEATURE_REQUIRE_TEAM_INVITE [boolean]: Whether to require invitations when adding a user to a team. Defaults to True.


	Example: True






	FEATURE_SECURITY_NOTIFICATIONS [boolean]: If the security scanner is enabled, whether to turn of/off security notificaitons. Defaults to False.


	Example: False






	FEATURE_SECURITY_SCANNER [boolean]: Whether to turn of/off the security scanner. Defaults to False.


	Reference: https://coreos.com/quay-enterprise/docs/latest/security-scanning.html


	Example: False






	FEATURE_STORAGE_REPLICATION [boolean]: Whether to automatically replicate between storage engines. Defaults to False.


	Example: False






	FEATURE_SUPER_USERS [boolean]: Whether super users are supported. Defaults to True.


	Example: True






	FEATURE_TEAM_SYNCING [boolean]: Whether to allow for team membership to be synced from a backing group in the authentication engine (LDAP or Keystone).


	Example: True






	FEATURE_USER_CREATION [boolean] :Whether users can be created (by non-super users). Defaults to True.


	Example: True






	FEATURE_USER_LOG_ACCESS [boolean]: If set to true, users will have access to audit logs for their namespace. Defaults to False.


	Example: True






	FEATURE_USER_METADATA [boolean]: Whether to collect and support user metadata. Defaults to False.


	Example: False






	FEATURE_USER_RENAME [boolean]: If set to true, users can rename their own namespace. Defaults to False.


	Example: True






	GITHUB_LOGIN_CONFIG [object, ‘null’]: Configuration for using GitHub (Enterprise) as an external login provider.


	Reference: https://coreos.com/quay-enterprise/docs/latest/github-auth.html


	allowed_organiztions [array]: The names of the GitHub (Enterprise) organizations whitelisted to work with the ORG_RESTRICT option.


	Min Items: None


	Unique Items: True


	array item [string]










	API_ENDPOINT [string]: The endpoint of the GitHub (Enterprise) API to use. Must be overridden for github.com.


	Example: https://api.github.com/






	CLIENT_ID [string] required: The registered client ID for this Quay instance; cannot be shared with GITHUB_TRIGGER_CONFIG.


	Reference: https://coreos.com/quay-enterprise/docs/latest/github-app.html


	Example: 0e8dbe15c4c7630b6780






	CLIENT_SECRET [string] required: The registered client secret for this Quay instance.


	Reference: https://coreos.com/quay-enterprise/docs/latest/github-app.html


	Example: e4a58ddd3d7408b7aec109e85564a0d153d3e846






	GITHUB_ENDPOINT [string] required: The endpoint of the GitHub (Enterprise) being hit.


	Example: https://github.com/






	ORG_RESTRICT [boolean]: If true, only users within the organization whitelist can login using this provider.


	Example: True










	GITHUB_TRIGGER_CONFIG [object, null]: Configuration for using GitHub (Enterprise) for build triggers.


	Reference: https://coreos.com/quay-enterprise/docs/latest/github-build.html


	API_ENDPOINT [string]: The endpoint of the GitHub (Enterprise) API to use. Must be overridden for github.com.


	Example: https://api.github.com/






	CLIENT_ID [string] required: The registered client ID for this Quay instance; cannot be shared with GITHUB_LOGIN_CONFIG.


	Reference: https://coreos.com/quay-enterprise/docs/latest/github-app.html


	Example: 0e8dbe15c4c7630b6780






	CLIENT_SECRET [string] required: The registered client secret for this Quay instance.


	Reference: https://coreos.com/quay-enterprise/docs/latest/github-app.html


	Example: e4a58ddd3d7408b7aec109e85564a0d153d3e846






	GITHUB_ENDPOINT [string] required: The endpoint of the GitHub (Enterprise) being hit.


	Example: https://github.com/










	GITLAB_TRIGGER_CONFIG [object]: Configuration for using Gitlab (Enterprise) for external authentication.


	CLIENT_ID [string] required: The registered client ID for this Quay instance.


	Example: 0e8dbe15c4c7630b6780






	CLIENT_SECRET [string] required: The registered client secret for this Quay instance.


	Example: e4a58ddd3d7408b7aec109e85564a0d153d3e846


	gitlab_endpoint [string] required: The endpoint at which Gitlab(Enterprise) is running.


	Example: https://gitlab.com














	GOOGLE_LOGIN_CONFIG [object, null]: Configuration for using Google for external authentication


	CLIENT_ID [string] required: The registered client ID for this Quay instance.


	Example: 0e8dbe15c4c7630b6780






	CLIENT_SECRET [string] required: The registered client secret for this Quay instance.


	Example: e4a58ddd3d7408b7aec109e85564a0d153d3e846










	HEALTH_CHECKER [string]: The configured health check.


	Example: ('RDSAwareHealthCheck', {'access_key': 'foo', 'secret_key': 'bar'})






	LOG_ARCHIVE_LOCATION [string]:If builds are enabled, the storage engine in which to place the archived build logs.


	Example: s3_us_east






	LOG_ARCHIVE_PATH [string]: If builds are enabled, the path in storage in which to place the archived build logs.


	Example: archives/buildlogs






	
	MAIL_DEFAULT_SENDER [string, null]: If specified, the e-mail address used as the from when Quay sends e-mails. If none, defaults to support@quay.io.


	Example: support@myco.com






	MAIL_PASSWORD [string, null]: The SMTP password to use when sending e-mails.


	Example: mypassword






	MAIL_PORT [number]: The SMTP port to use. If not specified, defaults to 587.


	Example: 588






	MAIL_SERVER [string]: The SMTP server to use for sending e-mails. Only required if FEATURE_MAILING is set to true.


	Example: smtp.somedomain.com






	MAIL_USERNAME [string, ‘null’]: The SMTP username to use when sending e-mails.


	Example: myuser






	MAIL_USE_TLS [boolean]: If specified, whether to use TLS for sending e-mails.


	Example: True






	MAXIMUM_LAYER_SIZE [string]: Maximum allowed size of an image layer. Defaults to 20G.


	Pattern: ^[0-9]+(G|M)$


	Example: 100G






	PUBLIC_NAMESPACES [array]: If a namespace is defined in the public namespace list, then it will appear on all user’s repository list pages, regardless of whether that user is a member of the namespace. Typically, this is used by an enterprise customer in configuring a set of “well-known” namespaces.


	Min Items: None


	Unique Items: True


	array item [string]










	PROMETHEUS_NAMESPACE [string]: The prefix applied to all exposed Prometheus metrics. Defaults to quay.


	Example: myregistry






	RECAPTCHA_SITE_KEY [string]: If recaptcha is enabled, the site key for the Recaptcha service.


	RECAPTCHA_SECRET_KEY [string]: ‘If recaptcha is enabled, the secret key for the Recaptcha service.


	REGISTRY_TITLE [string]: If specified, the long-form title for the registry. Defaults to Quay Enterprise.


	Example: Corp Container Service






	REGISTRY_TITLE_SHORT [string]: If specified, the short-form title for the registry. Defaults to Quay Enterprise.


	Example: CCS






	SECURITY_SCANNER_ENDPOINT [string]: The endpoint for the security scanner.


	Pattern: ^http(s)?://(.)+$


	Example: http://192.168.99.101:6060






	SECURITY_SCANNER_INDEXING_INTERVAL [number]: The number of seconds between indexing intervals in the security scanner. Defaults to 30.


	Example: 30






	SESSION_COOKIE_SECURE [boolean]: Whether the secure property should be set on session cookies. Defaults to False. Recommended to be True for all installations using SSL.


	Example: True


	Reference: https://en.wikipedia.org/wiki/Secure_cookies






	SUPER_USERS [array]: Quay usernames of those users to be granted superuser privileges.


	Min Items: None


	Unique Items: True


	array item [string]










	TEAM_RESYNC_STALE_TIME [string]: If team syncing is enabled for a team, how often to check its membership and resync if necessary(Default: 30m).


	Pattern: ^[0-9]+(w|m|d|h|s)$


	Example: 2h






	USERFILES_LOCATION [string]: ID of the storage engine in which to place user-uploaded files.


	Example: s3_us_east






	USERFILES_PATH [string]: Path under storage in which to place user-uploaded files.


	Example: userfiles






	USER_RECOVERY_TOKEN_LIFETIME [string]: The length of time a token for recovering a user accounts is valid. Defaults to 30m.


	Example: 10m


	Pattern: ^[0-9]+(w|m|d|h|s)$






	V2_PAGINATION_SIZE [number]: The number of results returned per page in V2 registry APIs.


	Example: 100










          

      

      

    

  

  
    
    Quay Security Scanner
    

    
 
  

    
      
          
            
  
Quay Security Scanner

Quay Enterprise supports scanning container images for known vulnerabilities with a scanning engine such as Clair.
This document explains how to configure Clair with Quay Enterprise.


Visit the management panel

Sign in to a super user account and visit http://yourregister/superuser to view the management panel:

[image: Quay Enterprise Management Panel]


Enable Security Scanning

[image: Enable Security Scanning]
	Click the configuration tab () and scroll down to the section entitled Security Scanner.


	Check the “Enable Security Scanning” box







Enter a security scanner

In the “Security Scanner Endpoint” field, enter the HTTP endpoint of a Quay Enterprise-compatible security scanner such as Clair.

[image: Security Scanner Endpoint]


Generate an auth key

To connect Quay Enterprise securely to the scanner, click “Create Key >” to create an authentication key between Quay and the Security Scanner.


Authentication for high-availability scanners

If the security scanning engine is running on multiple instances in a high-availability setup, select “Generate shared key”:

[image: Security Scanner Generate Shared Key]Enter an optional expiration date, and click “Generate Key”:

[image: Security Scanner Generate Shared Key]Save the key ID and download the preshared private key into the configuration directory for the security scanning engine.

[image: Security Scanner Shared Key]


Authentication for single-instance scanners

If the security scanning engine is being run on a single instance, select “Have the service provide a key”:

[image: Security Scanner Service Provide Key]Once the following dialog is visible, run the security scanning engine:

[image: Security Scanner Service Awaiting Key]When the security scanning engine connects, the key will be automatically approved.






Save configuration


	Click “Save Configuration Changes”


	Restart the container (you will be prompted)










          

      

      

    

  

  
    
    Running Quay Enterprise behind an Elastic Load Balancer
    

    
 
  

    
      
          
            
  
Running Quay Enterprise behind an Elastic Load Balancer

Running Quay Enterprise behind a load balancer is often desired for large installations. However, simply putting a load balancer in front of the Quay Enterprise has some unintended consequences:


	all logged IP addresses will be the IP of the load balancer


	since the TLS-termination is done by the container, you can’t use both a load balancer and HTTPS.




These issues can be avoided through the use of Proxy Protocol [http://www.haproxy.org/download/1.5/doc/proxy-protocol.txt] which is exposed by the container on port 8443. This requires the Quay Enterprise container be executed the with the -p 8443:8443 flag on the docker run command to expose this port:

sudo docker run --restart=always -p 443:443 -p 80:80 -p 8443:8443 --privileged=true -v /local/path/to/the/config/directory:/conf/stack -v /local/path/to/the/storage/directory:/datastorage -d quay.io/coreos/quay





Load balancer requirements include:


	TCP Forwarding


	Proxy Protocol forwarding




| Software | TCP Forwarding | Proxy Protocol |
| ——– | :————: | :————: |
| HAProxy  |       ✓        |       ✓        |
| ELB      |       ✓        |       ✓        |
| nginx    |       ✓        |       ✕        |


Setting up Amazon Elastic Load Balancer

Setting up an ELB with Proxy Protocol enabled requires an existing classic ELB and access to the aws cli tool [http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html]. AWS documentation on creating an ELB can be found here [http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-getting-started.html].

ELB Name: quay-loadbalancer

Policy Name: quay-ProxyProtocol-policy


Create a load balancer policy that enables the Proxy Protocol

$ aws elb create-load-balancer-policy --load-balancer-name quay-loadbalancer --policy-name quay-ProxyProtocol-policy --policy-type-name ProxyProtocolPolicyType --policy-attributes AttributeName=ProxyProtocol,AttributeValue=true





Describe the quay-ProxyProtocol-policy  policy to ensure correctness.

$ aws elb describe-load-balancer-policies --load-balancer-name quay-loadbalancer --policy-names quay-ProxyProtocol-policy





Output should match the following:

{
    "PolicyDescriptions": [
        {
            "PolicyName": "quay-ProxyProtocol-policy",
            "PolicyAttributeDescriptions": [
                {
                    "AttributeName": "ProxyProtocol",
                    "AttributeValue": "true"
                }
            ],
            "PolicyTypeName": "ProxyProtocolPolicyType"
        }
    ]
}








Set the Proxy Protocol policy on instance port 8443

$ aws elb set-load-balancer-policies-for-backend-server --load-balancer-name quay-loadbalancer --instance-port 8443 --policy-names quay-ProxyProtocol-policy








View configuration of ELB

Confirm that the Proxy Protocol policy has  been set to on instance port 8443 by looking for the output of BackendServerDescriptions in the ELB description:

$ aws elb describe-load-balancers --load-balancer-name quay-loadbalancer
[...]
{
    "LoadBalancerDescriptions": [
        {
            ...
            "BackendServerDescriptions": [
                {
                    "PolicyNames": [
                        "quay-ProxyProtocol-policy"
                    ],
                    "InstancePort": 8443
                    ]
                }
            ], 
            ...
        }
    ]
}








Configure listeners to forward traffic to Quay Enterprise

A TCP listener should be configured to route traffic from Load Balancer Port 443 to Instance Port 8443. This is most easily configured from the AWS console.

[image: Edit Listeners]When properly configured, the Listeners tab for the ELB should appear like so:

[image: Listeners]
  
    
    Quay Enterprise Swift direct download
    

    
 
  

    
      
          
            
  
Quay Enterprise Swift direct download


Direct download

The Swift storage engine supports using a feature called temporary URLs [http://docs.openstack.org/juno/config-reference/content/object-storage-tempurl.html] to allow for faster pulling of images.

To enable direct download with Swift, please follow these instructions.




Create a Swift temporary URL token

To enable temporary URLs, first set the X-Account-Meta-Temp-URL-Key header on your Object Storage account to an arbitrary string. This string serves as a secret key. For example, to set a key of somecoolkey using the swift command-line tool:

$ swift post -m "Temp-URL-Key:somecoolkey"








Visit the management panel

Sign in to a super user account and visit http://registry.example.com/superuser to view the management panel:

[image: Quay Enterprise Management Panel]


Go to the settings tab


	Click the configuration tab () and scroll down to the section entitled Registry Storage.


	Ensure that “OpenStack Storage (Swift)” is selected







Enter the temporary URL key

Enter the key generated above into the Temp URL Key field under the Swift storage engine settings.




Save configuration

Hit Save Configuration to save and validate your configuration. The Swift storage engine system will automatically test that the direct download feature is enabled and working.







          

      

      

    

  

  
    
    Quay Enterprise Troubleshooting guides
    

    
 
  

    
      
          
            
  
Quay Enterprise Troubleshooting guides

Common failure modes and best practices for recovery.


	I’m receiving HTTP Status Code 429 [http://docs.quay.io/issues/429.html]


	I’m authorized but I’m still getting 403s [http://docs.quay.io/issues/auth-failure.html]


	Base image pull in Dockerfile fails with 403 [http://docs.quay.io/issues/base-pull-issue.html]


	Cannot add a build trigger [http://docs.quay.io/issues/cannot-add-trigger.html]


	Build logs are not loading [http://docs.quay.io/issues/cannot-load-build-logs.html]


	I’m receiving “Cannot locate specified Dockerfile” [http://docs.quay.io/issues/cannot-locate-dockerfile.html]


	Could not reach any registry endpoint [http://docs.quay.io/issues/could-not-reach-any-registry-endpoint.html]


	Cannot access private repositories using EC2 Container Service [http://docs.quay.io/issues/ecs-auth-failure.html]


	Docker is returning an i/o timeout [http://docs.quay.io/issues/iotimeout.html]


	Docker login is failing with an odd error [http://docs.quay.io/issues/odd-login-failure.html]


	Pulls are failing with an odd error [http://docs.quay.io/issues/odd-pull-failure.html]


	I just pushed but the timestamp is wrong [http://docs.quay.io/issues/push-timestamp-wrong.html]


	Pulling Private Quay.io images with Marathon/Mesos fails [http://docs.quay.io/issues/quay-mesos.html]








          

      

      

    

  

  
    
    Quay Enterprise upgrade guide
    

    
 
  

    
      
          
            
  
Quay Enterprise upgrade guide

This document describes how to upgrade one or more Quay Enterprise containers.


Backup the Quay Enterprise database

The database is the “source of truth” for Quay, and some version upgrades will trigger a schema update and data migration. Such versions are clearly documented in the Quay Enterprise release notes [https://coreos.com/quay-enterprise/releases/].

Backup the database before upgrading Quay Enterprise. Once the backup completes, use the procedure in this document to stop the running Quay Enterprise container, start the new container, and check the health of the upgraded Quay Enterprise service.




Provide Quay credentials to the Docker client

docker login quay.io








Pull the latest Quay Enterprise release from the CoreOS repository

Check the list of Quay Enterprise releases [https://coreos.com/quay-enterprise/releases/] for the latest version.

docker pull quay.io/coreos/registry:RELEASE_VERSION





Replace RELEASE VERSION with the desired version of Quay Enterprise.




Find the running Quay Enterprise container ID

docker ps -a





The Quay Enterprise image will be labeled quay.io/coreos/registry.




Stop the existing Quay Enterprise container

docker stop QE_CONTAINER_ID








Start the new Quay Enterprise container

docker run --restart=always -p 443:443 -p 80:80 --privileged=true \
-v /local/path/to/config/directory:/conf/stack \
-v /local/path/to/storage/directory:/datastorage \
-d quay.io/coreos/registry:RELEASE_VERSION





Replace /local/path/to/config/directory and /local/path/to/storage/directory with the absolute paths to those directories on the host. Replace RELEASE_VERSION with the desired Quay Enterprise version.

Rarely, but occasionally, the new Quay Enterprise version may perform a database schema upgrade and migration. Versions requiring such database migrations will take potentially much longer to start the first time. These versions are clearly documented in the release notes [https://coreos.com/quay-enterprise/releases/], which should be consulted before each Quay Enterprise upgrade.




Check the health of the upgraded container

Visit the /health/endtoend endpoint on the registry hostname and verify that the code is 200 and is_testing is false.




Upgrade the rest of the containers in the cluster.

If the upgraded container is healthy, repeat this process for all remaining Quay Enterprise containers.







          

      

      

    

  

  
    
    Upgrading Quay Enterprise
    

    
 
  

    
      
          
            
  
Upgrading Quay Enterprise

The full list of Quay Enterprise versions can be found on the Quay Enterprise Releases [https://coreos.com/quay-enterprise/releases/] page.


Special Note: Upgrading from Quay Enterprise < 2.0.0 to >= 2.0.0

If you are upgrading from a version of Quay Enterprise older than 2.0.0, you must upgrade to Quay Enterprise 2.0.0 first. Please follow the Upgrade to Quay Enterprise 2.0.0 instructions to upgrade to Quay Enterprise 2.0.0, and then follow the instructions below to upgrade from 2.0.0 to the latest version you’d like.




Upgrading Note

We highly recommend performing upgrades during a scheduled maintainence window, as it will require taking the existing cluster down temporarily. We are working to remove this restriction in a future release.




The upgrade process


	Visit the Quay Enterprise Releases [https://coreos.com/quay-enterprise/releases/] page and note the latest version of Quay Enterprise.


	Shutdown the Quay Enterprise cluster: Remove all containers from service.


	On a single node, run the newer version of Quay Enterprise.


	Quay Enterprise will perform any necessary database migrations before bringing itself back into service.




Watch the logs of the running container to determine when the upgrade has completed:

docker logs -f {containerId}






	Update all other nodes to refer to the new tag and bring them back into service.










          

      

      

    

  

  
    
    Quay Enterprise Installation on Tectonic
    

    
 
  

    
      
          
            
  
Quay Enterprise Installation on Tectonic

This guide walks through the deployment of Quay Enterprise [https://quay.io/tour/enterprise] onto a Tectonic cluster.
After completing the steps in this guide, a deployer will have a functioning instance of Quay Enterprise orchestrated as a Kubernetes service on a Tectonic cluster, and will be able to access the Quay Enterprise Setup tool with a browser to complete configuration of image repositories, builders, and users.


Prerequisites

A PostgreSQL database must be available for Quay Enterprise metadata storage.
We currently recommend running this database server outside of the cluster.




Download Kubernetes Configuration Files

Visit your Tectonic Account [https://account.tectonic.com] and download the pre-formatted pull secret, under “Account Assets”. There are several formats of the secret, be sure to download the “dockercfg” format resulting in a config.json file. This pull secret is used to download the Quay Enterprise containers.

This will be used later in the guide.

Next, download each of the following files to your workstation, placing them alongside your pull secret:


	quay-enterprise-namespace.yml


	quay-enterprise-config-secret.yml


	quay-enterprise-redis.yml


	quay-enterprise-app-rc.yml


	quay-enterprise-service-nodeport.yml


	quay-enterprise-service-loadbalancer.yml







Role Based Access Control

Quay Enterprise has native Kubernetes integrations. These integrations require Service Account to have access to Kubernetes API. When Kubernetes RBAC is enabled (Tectonic  v1.4 and later), Role Based Access Control policy manifests also have to be deployed.

Kubernetes API has minor changes between versions 1.4 and 1.5, Download appropiate versions of Role Based Access Control (RBAC) Policies.


Tectonic v1.6.x and later RBAC Policies


	quay-servicetoken-role.yaml


	quay-servicetoken-role-binding.yaml







Tectonic v1.5.x RBAC Policies


	quay-servicetoken-role.yaml


	quay-servicetoken-role-binding.yaml







Tectonic v1.4.x RBAC Policies


	quay-servicetoken-role.yaml


	quay-servicetoken-role-binding-k8s1-4.yaml









Deploy to Kubernetes

All Kubernetes objects will be deployed under the “quay-enterprise” namespace.
The first step is to create this namespace:

kubectl create -f quay-enterprise-namespace.yml





Next, add your pull secret to Kubernetes (make sure you specify the correct path to config.json):

kubectl create secret generic coreos-pull-secret --from-file=".dockerconfigjson=config.json" --type='kubernetes.io/dockerconfigjson' --namespace=quay-enterprise






Tectonic v1.6.x and later : Deploy RBAC Policies

kubectl create -f quay-servicetoken-role-k8s1-6.yaml
kubectl create -f quay-servicetoken-role-binding-k8s1-6.yaml








Tectonic v1.5.x : Deploy RBAC Policies

kubectl create -f quay-servicetoken-role.yaml
kubectl create -f quay-servicetoken-role-binding.yaml








Tectonic v1.4.x : Deploy RBAC Policies

kubectl create -f quay-servicetoken-role.yaml
kubectl create -f quay-servicetoken-role-binding-k8s1-4.yaml








Deploy Quay Enterprise objects

Finally, the remaining Kubernetes objects can be deployed onto Kubernetes:

kubectl create -f quay-enterprise-config-secret.yml -f quay-enterprise-redis.yml -f quay-enterprise-app-rc.yml










Expose via Kubernetes Service

In order to access Quay Enterprise, a user must route to it through a Kubernetes Service.
It is up to the deployer to decide which Service type is appropriate for their use case: a LoadBalancer [http://kubernetes.io/docs/user-guide/services/#type-loadbalancer] or a NodePort [http://kubernetes.io/docs/user-guide/services/#type-nodeport].

A LoadBalancer is recommended if the Kubernetes cluster is integrated with a cloud provider, otherwise a NodePort will suffice.
Along with this guide are examples of this service.


LoadBalancer

Using the sample provided, a LoadBalancer Kubernetes Service can be created like so:

kubectl create -f quay-enterprise-service-loadbalancer.yml





kubectl can be used to find the externally-accessible URL of the quay-enterprise service:

kubectl describe services quay-enterprise --namespace=quay-enterprise








NodePort

Using the sample provided, a NodePort Kubernetes Service can be created like so:

kubectl create -f quay-enterprise-service-nodeport.yml





By default, the quay-enterprise service will be available on port 30080 on every node in the Kubernetes cluster.
If this port conflicts with an existing Kubernetes Service, simply modify the sample configuration file and change the value of NodePort.






Continue with Quay Enterprise Setup

All that remains is to configure Quay Enterprise itself.
After successfully creating the quay-enterprise Kubernetes Service, navigate to http://{quay-enterprise}/setup in a web browser to load the Quay Enterprise setup tool, replacing {quay-enterprise} with a value that routes to your Service.

Once at the Quay Enterprise setup UI, follow the setup instructions to finalize your installation.







          

      

      

    

  
_images/vmware-ip.png
jocatiost fogh

his is localhost.unknown_donain (Linux x86_64 3.10.9+) 17:58:46
ocker@: 172.17.42.1 fe80::24ea:84ff:fecl:9eb

ns33:  fe80::20c:29ff:feld:9027

lo: 127.0.0.1 ::1

localhost login:

his is localhost.unknown_donain (Linux x86_64 3.10.9+) 17:58:48
ocker@: 172.17.42.1 fe80::24ea:84ff:fecl:9eb
ns33:  fe80::20c:29ff:feld:9027

lo: 127.0.6.1 ::1

localhost login:

This is localhost.unknoun_domain (Linux x86_64 3.10.9+) 17:58:50
docker: 172.17.42.1 feB0::2dea:847f:fecl:9beb

ens33: 10.0.1.81 fes ©1d:9027

lo: 127.0.0.1 ::1

localhost logi






_static/ajax-loader.gif





_i